Broadening participation in engineering is a major priority for the National Science Foundation. Because of its importance to workforce development, national security, and economic prosperity, there is a pressing need to fund broadening participation educational research with strong intellectual merit and that render findings that can be used to broadening participation throughout the engineering enterprise. This CAREER research project is motivated by the need to develop practical strategies and frameworks for helping underrepresented students successfully navigate hidden curriculum that often deter or impede their academic persistence in engineering degree programs. Research findings are likely to inform the engineering education community about negative impacts of hidden curriculum on underrepresented students' academic persistence in engineering and how to create a more inclusive engineering academic culture for all students. In engineering, there is strong need to better understand the academic and social challenges that underrepresented students often face in engineering degree programs. Conducting research studies, such as this, offers immense potential to transform engineering education and engineering practice for underrepresented students.

This CAREER research project proposes to utilize a mixed-method, multi-institutional approach to study hidden curriculum in engineer degree programs and these curricula the motivations (i.e., emotions and self-efficacy), behaviors, and actions of engineering faculty and students at three Hispanic Serving Institutions, one Historically Black College and University, and one Predominantly White Institution. This research study comprises three phases: (a) an early stage exploratory study, (b) a design and development study, and (c) an efficacy study. More specifically, Phase 1 consists of conducting a quantitative study in civil engineering across different institutional types and classifications of institutions of higher education. Three unique surveys - focused on HC in engineering and the motivations, behaviors, and actions of engineering faculty and students - will be developed and validated. Phase 2 involves developing a set of custom-made advocacy mentoring training materials for each institution through member-checking qualitative interviews. Phase 3 focuses on expanding the project to other engineering specialties, beyond civil engineering, for each of the targeted institutions of higher learning. By including a targeted population first, followed by a wider spectrum of engineering disciplines, the findings from this project are likely to result in increased generalizability and transferability of the findings that could be used to improve engineering retention and graduation rates among underrepresented groups.

Agency
National Science Foundation (NSF)
Institute
Division of Engineering Education and Centers (EEC)
Type
Standard Grant (Standard)
Application #
2123016
Program Officer
Christine Grant
Project Start
Project End
Budget Start
2021-04-01
Budget End
2021-12-31
Support Year
Fiscal Year
2021
Total Cost
$251,571
Indirect Cost
Name
University of Florida
Department
Type
DUNS #
City
Gainesville
State
FL
Country
United States
Zip Code
32611