This Small Business Innovation Research (SBIR ) Phase II project will develop electro-optic photonic bandgap (EO-PBG) Materials and Devices. During the Phase I project the feasibility of the proposed electro-optic PBG technology has been demonstrated. High quality EO film, La-modified PMN-PT (PLMNT), was successfully deposited using a unique metal-organic chemical liquid deposition (MOCLD) technique, a low cost and efficient manufacturing process. A large EO coefficient was achieved from PLMNT films. An innovative metallic/dielectric PBG structure was designed and studied for device applications. An electro-optic filter/modulator was developed. A two-dimensional PBG structure was demonstrated for efficient wavelength tuning through simulation. In Phase II based on this Phase I work, new generation tunable PBG material and devices, such as filters and modulators with state-of-the-art performance, will be brought to the marketplace.

Commercially photonic bandgap materials promise to give similar control of the flow of photons as there is over electrons in a semiconductor material but with even greater flexibility because there is far more control over the properties of photonic bandgap materials than the electronic properties of semiconductors. Given the impact that semiconductor materials have had on every sectors of society, photonic bandgap materials could play an even greater role in the 21st century, particularly in the optical-communications industry. Not only can this material be made into common PBG passive components, such as cavities, waveguides, or couplers, but also the active and dynamic ones, such as high-speed modulator and tunable filters. These advanced devices will have great applications in industrial, space, and military sectors.

Project Start
Project End
Budget Start
2005-09-01
Budget End
2007-11-30
Support Year
Fiscal Year
2005
Total Cost
$499,821
Indirect Cost
Name
Boston Applied Technologies, Incorporated
Department
Type
DUNS #
City
Woburn
State
MA
Country
United States
Zip Code
01801