This Small Business Technology Transfer (STTR) Phase I project will dramatically improve electrocatalyst utilization in PEM fuel cells to reduce their cost and ultimately assure their commercial viability in transportation applications. Using current technology, the cost of mass- produced PEM fuel cells is driven by the cost of platinum catalyst, yet the vast majority of the platinum is unutilized; dispersed largely onto inaccessible areas of the porous electrode. Using a novel thin-film laser ablation technique, this project seeks to achieve deposition of appropriately sized catalyst nanoparticles directly onto a polymer electrolyte precisely where they are needed. In combination with more durable electrode materials, this approach has the potential to reduce catalyst requirements to a tiny fraction of current levels. Program efforts will first optimize the laser ablation conditions to create and deposit dense distributions of non-agglomerated catalyst nanoparticles on solid polymer electrolyte films. These will then be used to fabricate and test membrane electrode assemblies (MEAs). The anticipated result is a more easily controlled, dry chemistry, high volume, reel-to-reel process to produce cheaper, more effective components that will make fuel cells viable for transportation applications, initially in scooters and low velocity Neighborhood Electric Vehicles, and ultimately in automobiles.

The broader impact/commercial potential from the technology will be a method for deposition of fuel cell catalyst particles by laser ablation, resulting in affordable PEM fuel cells; this could have wide ranging impact on society and manufacturing science. The addition of a fuel cell charger will give all-electric vehicles increased range and usefulness. Ultimately replacing the internal combustion engines with practical, economical fuel cells which will provide an alternative that can reduce American dependence on foreign oil, reducing pollution, and green house gas emissions Applications may also extend to non-transportation sectors, such as remote, on-site power generators for buildings (bringing affordable energy to off-grid locations), and miniature fuel cells to power consumer electronics.

Agency
National Science Foundation (NSF)
Institute
Division of Industrial Innovation and Partnerships (IIP)
Type
Standard Grant (Standard)
Application #
0740569
Program Officer
Cynthia A. Znati
Project Start
Project End
Budget Start
2008-01-01
Budget End
2008-12-31
Support Year
Fiscal Year
2007
Total Cost
$149,975
Indirect Cost
Name
Mound Laser & Photonics Center, Inc.
Department
Type
DUNS #
City
Kettering
State
OH
Country
United States
Zip Code
45420