This SBIR Phase II research project develops a new rapid, nonmolecular method for quickly testing the drug susceptibility of Mycobacteria tuberculosis, the bacterium causing the epidemic disease tuberculosis (TB). Currently, all measurements for determining drug susceptibility - essential for prescribing effective treatment - rely exclusively on detecting changes in the slow growing bacterial population after exposure to drugs known to kill the bacterium. Phase I demonstrated this technology's approach to drug susceptibility testing provides commensurate information without time consuming measurements of growth. Susceptibility results were obtained in only a few hours compared to currently used methods requiring several weeks to obtain the same information. In addition, resistant strains were easily distinguished from sensitive strains inferring the ability to identify drug resistant TB infections in only a few hours time. With this information in hand quickly, physicians will be able to prescribe antimicrobial therapies with confidence because the treatments will be targeted and not empirical.
The broader impacts of this research are the reduced spread of drug-resistant infections, increasing of the effective lifespan of drugs now known to cure disease, and lower healthcare costs associated with more successful patient outcomes. Rapid testing will enable better control over the spread of tuberculosis and the management of effective domestic and global policies. This will leave the United States and all other countries better prepared to mount an adequate defense in the event of an epidemic or intentional widespread exposure.