This Small Business Innovation Research Phase I project proposes to develop a set of novel, versatile measurement tools for use during fermentation and scale-up in metabolic engineering. The tools will be based on the production of odorants and enable real-time time monitoring of gene expression levels during fermentation. Metabolic engineering holds great promise for enabling a range of important applications including cellulosic biofuels, therapeutics production, and bio-based, environmentally-friendly chemical manufacturing. But any such project requires that an engineered organism expressing the relevant biosynthetic pathway be scaled up from lab-sized cultures to large-scale commercial fermentation. This is not a straightforward task, and is different for every project, because the fermentation conditions required for each engineered strain are different. The new measurement tools will enable more detailed quantification of cell state during fermentation so that strain and pathway optimization is more informed.

The broader impacts of this research are to enable more informed strain optimization for large-scale fermentation thereby reducing R&D costs for the bio-based manufacturing industry. With the growing interest in clean technology and alternatives to petroleum-based manufacturing, many new companies and existing companies are moving into the bioengineering and biomanufacturing industries. However, all of these companies face a common hurdle of scaling up production of their fuel, specialty chemical or biomaterial to commercial scale. The companies spend significant R&D money and time optimizing pathway yield during fermentation. For example, Dupont took 7 years and $400M to scale-up microbial production of 1,3-propanediol. Jay Keasling, a founder of Amyris Biotechnologies, a leading synthetic biology company, reported that Amyris spends 95% of their time trying to find and eliminate unintended interactions between components in their engineered metabolic pathways. Reducing the R&D costs in the biofuels and industrial biotechnology industries would open up new application areas to environmentally-friendly, bio-based production solutions.

This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).

Agency
National Science Foundation (NSF)
Institute
Division of Industrial Innovation and Partnerships (IIP)
Type
Standard Grant (Standard)
Application #
0912541
Program Officer
Gregory T. Baxter
Project Start
Project End
Budget Start
2009-07-01
Budget End
2010-06-30
Support Year
Fiscal Year
2009
Total Cost
$99,981
Indirect Cost
Name
Ginkgo Bioworks
Department
Type
DUNS #
City
Boston
State
MA
Country
United States
Zip Code
02210