This Small Business Innovation Research (SBIR) Phase I project aims to enhance the automotive friction material manufacturing industry's productivity and efficiency by providing a superior measurement method for quality, consistency and the quantification of noise influencing material properties. Friction material manufacturing is subject to inter-material as well as inter-batch inconsistency that is not adequately quantifiable by existing methods. These inconsistencies adversely affect customer satisfaction, contribute to lost business and consume engineering and testing resources. An ultrasonic-based measurement method capable of measuring material property and consistency data has been employed in destructive laboratory testing with success. Modification of this method for use with intact, as-manufactured friction materials can provide manufacturers with the quality and consistency analysis tools that are currently severely lacking. In this program studies will be conducted to relate ultrasonic data to friction material processing variables and to forge a relationship between ultrasonic test data and noise performance. Ultrasonic measurement can be implemented as both, part of a control scheme to improve the manufacture of friction materials and as a quality assurance method to ensure that noise-prone components do not enter the marketplace. Both lead to increased customer satisfaction and significant gains in manufacturing efficiency.

The broader impact/commercial potential of this project is improved manufacturing processes for automotive friction materials. The entire automotive industry can attest that brake noise, vibration and harshness (NVH) repairs often dominate warranty claims. More than $100 million is spent annually on brake noise, vibration warranty work in North America alone. In order to reduce such warranty and brake repair costs, more attention is being placed on optimizing NVH performance to eliminate brake squeals, groans and other related issues at the original equipment level. This is especially true considering new vehicle quality perceptions are often driven in part by brake performance and warranty repairs. Although test methods suitable for measuring and controlling friction levels are available, methods to screen parts for the purpose of eliminating NVH problems are inadequate, lacking sufficient specificity to allow definitive screening for the elimination of defective components. These methods are expensive, slow and difficult to implement. Better quality assurance test methods are needed, which market ultrasonic measurement methods are fully capable of exploiting. Ultrasonic methods fit a need in the auto industry that has not been filled, despite much time and effort being devoted to NVH over the past few decades.

Project Start
Project End
Budget Start
2010-01-01
Budget End
2010-06-30
Support Year
Fiscal Year
2009
Total Cost
$150,000
Indirect Cost
Name
Industrial Measurement Systems Inc.
Department
Type
DUNS #
City
Aurora
State
IL
Country
United States
Zip Code
60502