This Small Business Innovation Research Phase I project is focused on developing a one-piece functionally graded hybrid (fiber/particle) reinforced aluminum alloy matrix automobile brake rotor. Composite brake rotors have substantial weight savings potential, but costs and performance have limited their adoption. In this project we will explore the concept of a one-piece, hybrid reinforced rotor. The new rotor will have significantly better properties and lifespan compared to conventional materials due to the functional reinforcement gradient (FRG) across the braking surface and the tailored macro-interfaces. While the project will benefit from our experience with FRG motorcycle brake rotors, the proposed work is not a direct extension because of unique challenges associated with it. A brake rotor has three functional zones: a) friction interface (heating zone), b) venting (cooling zone) and c) mounting hub (torque transfer zone). Each of these zones must have specific material attributes for the rotor to function properly. The development of the FRG transition interfaces between these zones is the focus of the Phase I effort. This work will address challenges related to the development of the squeeze casting process, die and preform design, and the control of the microstructure and properties of the aforementioned zones and interfaces.
The broader impact/commercial potential of this project includes weight savings in automobiles, increased fuel efficiency, and reduced emissions. This technology will also help in reducing weight in military vehicles, which will increase their loading capacity, reduce fuel consumption, and increase mission lengths. It is also expected that the longer life of the proposed brake rotors will reduce the related maintenance requirements. The company has partnered with the Polytechnic Institute of New York University, which will allow students to gain hands-on training. This functionally-graded one piece rotor will be a first-of-its-kind product in this market segment, which is expected to create a strong competitive position for our team. The deployment of this technology may also help to spur the development of other lightweight automobile components. Finally, successful development of this product, and the subsequent commercial transition in Phase II will result in the creation of high-paying jobs in the domestic economy.
This Small Business Innovation Research (SBIR) Phase I project was focused on developing a one-piece functionally graded hybrid (fiber/particle) reinforced aluminum alloy matrix automobile brake rotor. Composite brake rotors offer increased weight savings, higher braking performance, and increased component life. Current composite rotors on the market have a cost barrier, which limits mass production on high-production vehicle platforms. This project focused on the development and the deployment of a one-piece, hybrid reinforced rotor. These rotors utilize functional reinforcement gradient (FRG) technology across the braking surface and macro-interfaces. The technology development work addressed the challenges related to the development of the squeeze casting process, die and preform design, and controlling the microstructure/properties of the aforementioned surfaces and interfaces. This work also extended the current state of the art one-dimensional FRG technology to a higher-order gradient, specific to a one-piece rotor for a vehicle application. The broader impact/commercial potential of this project includes increased mass efficiency in all transportation vehicles. The project findings addresses a $94 Billion dollar automotive brake market but also can be leveraged across multiple other vehicle platforms. The technology can be also used in both structural and drivetrain applications further increasing fuel efficiency, reducing fuel emissions, and reducing lifecycle costs of vehicular components. Composite components in ancillary markets such as the military and trucking will also benefit from the customizability of material properties with the FRG technology. Increasing the agility of military vehicles for the Warfighter, reduction of in-theatre operating/maintenance costs, and rolling weight reduction in class 8 vehicles are examples of realized project benefits. "This Project Outcomes Report for the General Public is displayed verbatim as submitted by the Principal Investigator (PI) for this award. Any opinions, findings, and conclusions or recommendations expressed in this Report are those of the PI and do not necessarily reflect the views of the National Science Foundation; NSF has not approved or endorsed its content."