This Small Business Innovation Research (SBIR) Phase II project addresses the unmet needs for effective analysis of protein phosphorylation, a process where a phosphate group is added to a protein to change its function. Protein phosphorylation is a crucial modification of proteins; its abnormalities have been implicated in many diseases. Therefore, assessing the phosphorylation status of individual proteins or classes of proteins, qualitatively or quantitatively, has become a routine but extremely important step in the majority of life science research labs. Existing technologies have glaring deficiencies, including low reproducibility, poor recovery, high cost, reduced selectivity and prolonged experiment time. The platform technology to be developed during this Phase II project will greatly alleviate these shortcomings by providing lucrative, general approaches for phosphorylation analyses. The technologies will enable general phosphorylation detection, cost-effective cancer inhibitor screenings, and kinase/phosphatase activity quantitation for new drug discovery.
The broader impact/commercial potential of this project is the development of platform technology to improve a set of biochemical assays, thus enabling the discovery of new therapeutic targets and drugs. Protein phosphorylation and kinase inhibitors as drug targets are currently at the peak of research and development (R&D), responsible for over 30% of the total drug discovery expenses. These R&D activities could greatly benefit from the proposed technologies due to their innovative design and versatile features for optimum efficiency, and the ability to reproducibly explore phosphorylation events in unprecedented depth. These should provide invaluable tools and address needs of many bioscience research labs/facilities in academic and industrial settings.