This Small Business Innovation Research (SBIR) Phase II project is aimed at increasing the throughput of a novel single-cell technology based on nanofountain probe electroporation (NFP-E). Progress in biotechnology research in recent years has shown promise for cell reprogramming and extremely sensitive medical diagnostics, yet this research requires effective, precise, and gentle transfection of cells - for which a robust tool is currently lacking. The NFP-E technology is capable of filling this need by enabling single-cell electroporation for dosage-controlled transport of biomolecules, proteins, or drugs into a cell. By applying a low electric potential to a target cell, small pores in the cell membrane are generated, which allows for delivery of molecules into cells in a way that is more efficient and less invasive than any other method of transfection used today. This proposed project has three primary goals: to establish protocols for various cell types and transfection agents, to fabricate a microwell plate that couples with the NFP-E, and to develop software algorithms to automate alignment and electroporation control. These developments will create a robust system with exceptional process control and cell viability that is suitable for relatively high throughput single-cell transfection applications.
The broader impact/commercial potential of this project stems from the unprecedented capabilities that the novel tool will provide to researchers and biotechnology companies for manipulation and interrogation of cellular processes, benefiting fundamental biology research and the development of personalized medicine applications. This project will enhance the scientific and technological understanding of fundamental electroporation mechanisms and single cell analysis techniques by combining nanofabrication, microfluidics, biophysics, and molecular biology aspects. The NFP-E tool will allow scientists to use primary cells for research applications, providing a more meaningful link between laboratory research and human disease pathophysiology. In addition, this new tool could make the promise of personalized medicine feasible and practical by enabling new capabilities in biotechnology and providing a robust commercial instrument for single-cell studies toward discoveries that elucidate disease mechanisms, focus drug discovery efforts, and personalize disease diagnosis and therapies.