This SBIR Phase I project's broader/commercial impact is the potential of the intelligent tutoring system to increase young learners' science motivation and achievement and to improve their fluent reading and comprehension skills. The innovation thus addresses a critical national need to improve students' science learning and reading proficiency in our nation's schools, since national assessments of educational progress indicate that the majority of fourth, eighth and twelfth grade students are not proficient in either science or reading on standardized tests. The innovation is thus designed to provide teachers with an accessible, affordable and highly effective learning tool that will improve their students' engagement, motivation and learning in both science and reading. The projects' commercialization plan is designed to support widespread distribution of the innovation to schools in the U.S. and globally through existing channels, thus increasing the potential for broad societal impact.

The project aims to develop and demonstrate the feasibility of an intelligent tutoring system that will help children learn to reason about science and comprehend science texts through conversational interactions with a virtual tutor. Successful outcomes of the project will lead to new insights and contribute to scientific knowledge about how advanced human language technologies, character animation technologies and computer vision technologies can be combined and integrated into intelligent tutoring systems to optimize young learners' engagement, motivation, self-efficacy and learning. The project is based on theory and scientific research on how children learn through social interaction in multimedia environments, and prior research by the project team that improved children's motivation to learn science and their science achievement through conversations with a virtual science tutor. Successful outcomes of the SBIR Phase I project will extend this prior research and advance scientific knowledge by demonstrating the feasibility and promise of an intelligent tutoring system that tracks and interprets students? eye movements to improve science learning, oral reading fluency and reading comprehension.

Project Start
Project End
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
Fiscal Year
2014
Total Cost
$150,000
Indirect Cost
Name
Boulder Language Technologies
Department
Type
DUNS #
City
Boulder
State
CO
Country
United States
Zip Code
80301