The broader impact/commercial potential of this Small Business Innovation Research (SBIR) Phase I project is to deploy a diagnostic to rapidly and inexpensively detect COVID-19 infections. Beyond the short-term goal of identifying COVID-19 patients, the technology will lend strong support for real-time infection tracking nationally. The same hardware components of the diagnostic can be used to identify a wide variety of pathogens without custom reagents. The system will work with a cloud-based database and monitoring system to rapidly identify hotspots of increased pathogen activity, enabling faster response to new pathogens since no hardware-related development, manufacturing, and distribution are needed. Once a new pathogen?s fingerprint is obtained, it can be easily distributed to deployed instruments to enable immediately tracking of the new pathogen.
This Small Business Innovation Research (SBIR) Phase I project aims to develop a rapid diagnostic capable of detecting SARS-nCoV2 directly from sample matrices without the use of custom reagents (like DNA) or a cold supply chain. The approach isolates intact virus directly from the specimen with the help of a disposable cartridge and a syringe pump. The isolated virus is then identified using Fourier-Transform Infrared Spectrometry (FTIR). The proposed work leverages the differential response to mechanical stress between the virus and the components of a sample matrix. This differential response is used to selectively lyse only the sample matrix components, not the virus. The debris is subsequently separated from the virus by size-based separation methods such as filtration, enabling rapid isolation of a broad range of pathogens directly from the sample. FTIR is used to identify the isolated virus since pathogens exhibit unique spectral fingerprints in the infrared region. The proposed Phase I effort will develop the protocol for isolating and identifying intact virus and will demonstrate the performance with nasopharyngeal swab samples. The results will be compared against results from RT-PCR methods to assess comparability.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.