This research investigates shared representations, flexible learning techniques, and efficient multi-category inference methods that are suitable for large-scale visual recognition. The goal is to produce visual systems that can accurately describe a wide range of objects with varying precision, rather than being limited to identifying objects within a few pre-defined categories. The main approach is to design object representations that enable new objects to be understood in terms of existing ones, which enables learning with fewer examples and faster and more robust recognition.

The research has three main components: (1) Designing appearance and spatial models for objects that are shared across basic categories; (2) Investigating algorithms to learn from a mixture of detailed and loose annotations and from human feedback; and (3) Designing efficient search algorithms that take advantage of shared representations.

The research provides more detailed, flexible, and accurate recognition algorithms that are suitable for high-impact applications, such as vehicle safety, security, assistance to the blind, household robotics, and multimedia search and organization. For example, if a vehicle encounters a cow in the road, the vision system would localize the cow and its head and legs and report ``four-legged animal, walking left'', even if it has not seen cows during training. The research also provides a unique opportunity to involve undergraduates in research, promote interdisciplinary learning and collaboration, and engage in outreach. Research ideas and results are disseminated through scientific publications, released code and datasets, public talks, and demonstrations for high school students.

Agency
National Science Foundation (NSF)
Institute
Division of Information and Intelligent Systems (IIS)
Application #
1053768
Program Officer
Jie Yang
Project Start
Project End
Budget Start
2011-05-01
Budget End
2017-04-30
Support Year
Fiscal Year
2010
Total Cost
$500,000
Indirect Cost
Name
University of Illinois Urbana-Champaign
Department
Type
DUNS #
City
Champaign
State
IL
Country
United States
Zip Code
61820