This project deals with the important and timely theme of marine population connectivity. The degree to which populations of benthic marine organisms are connected via the dispersal of larval propagules is a central unanswered ecological and oceanographic question. The complex oceanography of marine systems, and high mortality and diffuse concentrations of larvae make direct measurement of larval sources generally unfeasible, particularly for marine populations distributed along open coastlines. In addition, ecological population connectivity is not only a function of the physical transport of larvae, but also the interaction of factors influencing larval growth, survival, and condition at settlement. For example, oligotrophic open-ocean environments may lead to slower larval growth, longer pelagic larval durations, and lower survivorship of larvae compared to larvae from nutrient-rich nearshore waters. Data indicate that the relative condition of larvae influences their survival on the reef and the degree to which they contribute to the population. Ultimately, as ocean currents, spawning patterns, larval survivorship, settlement, and their interactions are highly variable, the only method for examining ecological population connectivity over multiple time and space scales in oceanographically complex environments will be data-validated three dimensional biophysical models capable of assessing dispersal outcomes over a wide range of temporal and spatial variation.

The overall goal of this study is to quantify the relative contributions of upstream (far-field) versus local (near-field) sources of reef fish larvae to the Florida Keys. The proposed study will integrate a comprehensive, three dimensional hydrodynamic model with a Lagrangian particle tracking model to connect the pathways between observed ichthyoplankton distributions and larval settlement.

The broader impacts of the work include providing research and educational opportunities for two interdisciplinary graduate students whose dissertation research will be an integral part of the study, a post-doc (partial support), and several undergraduate field and laboratory assistants.

The important project in the area of Population Connectivity is cooperatively supported by the Biological and Physical Oceanography Programs .

Agency
National Science Foundation (NSF)
Institute
Division of Ocean Sciences (OCE)
Type
Standard Grant (Standard)
Application #
0550732
Program Officer
David L. Garrison
Project Start
Project End
Budget Start
2006-11-01
Budget End
2011-10-31
Support Year
Fiscal Year
2005
Total Cost
$1,479,214
Indirect Cost
Name
University of Miami Rosenstiel School of Marine&Atmospheric Sci
Department
Type
DUNS #
City
Key Biscayne
State
FL
Country
United States
Zip Code
33149