"This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5)."

Dispersal and connectivity are fundamental processes known to underpin the health and stability of marine populations and communities. Effective dispersal and recruitment facilitate recovery from a variety of environmental perturbations and allow populations and communities to respond to environmental change operating over a range of temporal scales. This project will study to examine key aspects of dispersal, connectivity, and life history dynamics in benthic foraminifera, a well-defined group of protists that are abundant and diverse in nearly all marine settings. Foraminifera are largely heterotrophic, important in carbon cycling, sensitive to environmental conditions, and their rich fossil record provides insight into processes functioning over the span of historical to deep time. Dispersal and connectivity patterns are not well understood, particularly in benthic representatives of this group. Recent studies, however, suggest very broad connectivity patterns in deep-sea settings yet different dispersal capabilities among closely related species of at least one coastal foraminiferal genus. The overarching goal of this project is to characterize the dispersal patterns and capabilities of coastal to bathyal benthic foraminifera and to relate these patterns to their life history dynamics, ability to respond to different environmental conditions, and the extent of population connectivity as reflected by the presence or absence of cryptic phylotypes in otherwise broadly distributed morphospecies. The PIs utilize coastal to bathyal study sites off the Northeastern US and coastal sites in Georgia (SE US) and will use interdisciplinary methodology for experimental manipulation of the foraminiferal propagule bank (juveniles present in sediments derived from both local and distant sources); morphological, epifluorescence and fine structural techniques; and molecular genetics.

This project will: (1) Determine the extent of dispersal perpendicular to the coastal zone, both from onshore-to offshore sites, and in the opposite offshore-to-onshore direction; (2) Determine whether dispersal within the coastal zone (i.e., parallel to the coast) occurs over long distances (i.e., between adjacent coastal provinces), as implied by numerous reports of "cosmopolitan" intertidal species, or whether dispersal is generally limited by region. (3) Determine the relationship between dispersal in selected benthic foraminifera and their life history dynamics; and (4) Assess the diversity of adult foraminiferal assemblages that can be grown from a single propagule bank under different environmental conditions, thus providing insight into the environmental adaptability of the propagule bank at each of the sites and hence the ability to respond to environmental change.

Broader Impacts: This project will contribute to a more comprehensive understanding of the processes of dispersal, life history dynamics, and connectivity in marine systems. Results would further resolve the debate between the ubiquity and moderate endemicity models of microbial dispersal, provide additional comparisons of dispersal patterns between eukaryotic microbes and macro-organisms, and contribute to our understanding of community-level modifications that result from environmental perturbations and change. In terms of education, this project will include participation by graduate and undergraduate students from the University of Georgia, including students from under-represented groups. The project will also provide the opportunity to participate in the research cruise for one or more undergraduates or graduate students majoring in science education. Such opportunities expand the educational base and experiences of future teachers.

Agency
National Science Foundation (NSF)
Institute
Division of Ocean Sciences (OCE)
Type
Standard Grant (Standard)
Application #
0850494
Program Officer
David L. Garrison
Project Start
Project End
Budget Start
2009-06-15
Budget End
2013-05-31
Support Year
Fiscal Year
2008
Total Cost
$304,367
Indirect Cost
Name
Woods Hole Oceanographic Institution
Department
Type
DUNS #
City
Woods Hole
State
MA
Country
United States
Zip Code
02543