Funds are provided to carry out a lab and field investigation of statistics describing the stratigraphic architecture of passive continental margins and their relationship to geomorphic surfaces. The overall objective of the project is to improve our ability to invert the stratigraphic record for paleo surfaces dynamics and topography. The continental margin record contains features such as bars, channels and channel networks, yet we cannot precisely reconstruct the relationship between these preserved deposits and geomorphic processes that produce them. Thus, the research plan is to use flume models to measure and identify scaling relationships in channelized, distributive systems with a focus on deltaic and deep water systems. The goal is determine how stratigraphic discontinuities are formed and to see if the mechanism of formation can be deduced from statistical descriptions of surface morphology. The ultimate objective is be able to infer the dynamic origin of fossilized erosional surfaces, using relationships derived from the experimental flume models.
The stated broader impacts include student training. The work also has practical value in understanding how coastal systems grow, as well as in resource extraction from the deltaic and deep-water systems. The results could have important implications in how we interpret stratigraphic surfaces in the field.