This award funds research to carry out numerical simulations in support of Plasma Dynamo and Couette Flow experiments. A Plasma Couette experiment, the first of its kind, has been constructed to study Magnetorotational Instability (MRI) in a hot, unmagnetized and fast flowing plasma. Plasma is confined by a strong multipole magnetic field at the plasma surface. The goals of the experiment are to study the MRI and possible self-generation of magnetic field by MRI-driven turbulence at high magnetic Reynolds numbers (the regime applicable to astrophysical plasmas). If successful, the concept could be readily extended to a larger, plasma-based dynamo experiment, studying the self-generation of magnetic field (MHD dynamo) but through hydrodynamic-driven turbulence in a confined plasma. Numerical modeling and theoretical studies are crucial for advancing the understanding of these two experiments and assuring their ultimate success. Numerical simulations using the extended MHD code, NIMROD, will be done and the numerical results will be directly compared with the experimental measurements. Numerical simulations are also expected to provide a guidance for the experimental design.

The proposed simulations with NIMROD code would strongly benefit the validation of a code, NIMROD, extensively used by the Magnetic Fusion community. In addition, the Magneto-rotational Instability (MRI) is thought to play a vital role in many astrophysical settings. Thus it is essential to have a line of physical experiments and computational models carried out that can test, guide and perhaps challenge many of the precepts now being applied in theoretical models with regard to MRI.

This proposal was submitted to the NSF-DoE Partnership in Plasma Science and Engineering joint solicitation 08-589. This award is being funded jointly by the Divisions of Physics and Astronomical Sciences of the Mathematical and Physical Sciences Directorate.

Agency
National Science Foundation (NSF)
Institute
Division of Physics (PHY)
Application #
0903926
Program Officer
Richard L. Berger
Project Start
Project End
Budget Start
2009-08-01
Budget End
2009-10-31
Support Year
Fiscal Year
2009
Total Cost
$100,044
Indirect Cost
Name
University of Wisconsin Madison
Department
Type
DUNS #
City
Madison
State
WI
Country
United States
Zip Code
53715