This award supports research at Augustana College (a small, undergraduate-only, liberal arts institution) to understand the structure of radioactive nuclei that have many excess neutrons. The National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University (MSU) produces radioactive beams with these excess neutrons. The beams are incident upon a target and the products of the nuclear reactions are measured in a variety of subatomic particle detectors. An important part of the project is the involvement of undergraduate students in these experiments and in development of the necessary detector instrumentation. Undergraduate research experience is important for many future technical careers as well as for graduate school. The funds for this award support the work of the undergraduates and the principle investigator to design and run experiments at NSCL, to analyze data, and to give talks and write papers on the results.
Experiments on exotic nuclear systems are necessary to place constraints on modern theoretical models. The nuclei studied as part of this project are neutron-unbound, which means that a neutron is emitted from a nucleus shortly after formation. Since the nuclei are so unstable, the radioactive nuclear ion beam at NSCL is utilized for these experiments. The charged particle left over after neutron emission is bent by the Sweeper Magnet into a suite of charged particle detectors. The emitted neutron is detected by the MoNA-LISA (Modular Neutron Array and the Large-area multi-Institutional Scintillator Array). The research in this proposal involves data analysis of neutron-unbound nuclear systems and on-going equipment development. New data on the 24O(d,p) reaction will be taken to study negative parity states in 25O. The Augustana-MSU hodoscope, assembled, tested and installed by the Augustana nuclear group, is a key device for this experiment. In addition, the PI will work on the design, construction, and use of a new segmented target system for future experiments.