The Center for Matter at Atomic Pressures (CMAP) is a new NSF Physics Frontiers Center that explores matter at pressures strong enough to change the nature of atoms themselves. Such conditions have not been explored or exploited on Earth, yet they dominate the interiors of planets and stars. To date, thousands of planets have been discovered, providing numerous possible platforms for life throughout the universe. To understand the origin, evolution, and nature of these planets, one has to understand properties of high energy density matter at and beyond atomic pressures. CMAP will use powerful lasers, pulsed-power, and x-ray beam facilities to recreate and characterize matter under the extreme conditions of the deep interiors of planets and stars. CMAP brings together a diverse team, spanning disciplines from plasma physics, condensed matter, and atomic physics to astrophysics and planetary science, to address gaps that limit our understanding of most of the atomic and chemical constituents of the Universe. CMAP aims to develop a new discipline of physics at extreme pressures, combined with the most advanced laboratory and theoretical capabilities available, to train tomorrow’s science leaders. CMAP’s research, education and outreach programs aim to bring a new understanding of the universe to the public and inspire and engage a new generation of scientists of all ages and backgrounds.

The NSF Physics Frontiers Center for Matter at Atomic Pressures will exploit a new generation of laboratory capabilities -- kilo-joule to Mega-Joule lasers, tens of Mega-Amp pulsed power, and advanced x-ray facilities -- and first-principles theory to explore the properties of matter under the high energy density conditions that exist in the deep interiors of planets and stars. CMAP will explore the nature and astrophysical implications of matter extending to and beyond the atomic unit of pressure, the pressure determined by the Hartree energy and Bohr radius, conditions that disrupt the electronic-shell structure of atoms, engage core electrons in bonding, and unlock a regime in which electron and ion quantum correlations can grow to macroscopic scales at high temperatures. Atomic pressure is a fundamental physical unit that remains unexplored. CMAP will bring together experts in plasma, atomic, and condensed matter physics leading to new discoveries and breakthroughs in physics. To do so, the CMAP team has a particular focus on excellence through diversity, and on convergence of research, education, and broad outreach efforts.

This Physics Frontiers Centers award is co-funded by the Division of Physics in the Directorate for Mathematical and Physical Sciences and the Division of Earth Sciences in the Directorate for Geosciences.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

Agency
National Science Foundation (NSF)
Institute
Division of Physics (PHY)
Type
Cooperative Agreement (Coop)
Application #
2020249
Program Officer
James Shank
Project Start
Project End
Budget Start
2020-08-15
Budget End
2025-07-31
Support Year
Fiscal Year
2020
Total Cost
$3,168,000
Indirect Cost
Name
University of Rochester
Department
Type
DUNS #
City
Rochester
State
NY
Country
United States
Zip Code
14627