To develop strategies to block parenteral transmission of HIV, it is critical to understand the mechanisms that initiate HIV infection and viral spread in vivo. Though for 25 years, the field has largely focused on cell-free mechanisms of viral spread to model and understand the disease, a compelling case can be made for the spread of HIV through direct contact between infected and uninfected cells. Our recent studies have focused on the cell biology of intercellular adhesive structures, called virological synapses, that enhance viral spread between cells. Using an innovative strategy to visualize viral transmission through synapses, we engineered a fluorescent, infectious molecular clone of HIV. At virological synapses, we uncovered dynamic movements of assembling virus particles in infected T cells, as well as a novel endocytic process that accompanies synapse formation and infection. The complexity of the cellular processes and their high efficiency suggests that this may be the dominant paradigm for HIV dissemination. We will test the hypothesis that the virological synapse represents the fundamental unit of transmission in vivo. Blocking the synapse, either with antibodies or with other antagonists, may be the key to breaking the cycle of transmission. For this avant garde project, we will exploit recently developed small humanized animal models to examine the sequence of events that occurs during parenteral HIV transmission. We will test the relative efficiency of cell-free versus cell-associated routes, and track viral dissemination in the first minutes and hours after viral challenge. To reveal the cell-cell and cell-virus interactions at an organismal level, we will employ in vivo imaging approaches to track the movement of infected or virus-carrying cells within humanized mice. We will reveal a sequence of interactions between infected cells/virus and uninfected cells. The results will provide new strategies to interfere with viral transmission and dissemination.

Agency
National Institute of Health (NIH)
Institute
National Institute on Drug Abuse (NIDA)
Type
NIH Director’s Pioneer Award (NDPA) (DP1)
Project #
5DP1DA028866-04
Application #
8312697
Study Section
Special Emphasis Panel (ZDA1-NXR-B (12))
Program Officer
Aigner, Thomas G
Project Start
2009-09-30
Project End
2014-08-31
Budget Start
2012-09-01
Budget End
2013-08-31
Support Year
4
Fiscal Year
2012
Total Cost
$813,854
Indirect Cost
$333,704
Name
Icahn School of Medicine at Mount Sinai
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
078861598
City
New York
State
NY
Country
United States
Zip Code
10029
Law, K M; Satija, N; Esposito, A M et al. (2016) Cell-to-Cell Spread of HIV and Viral Pathogenesis. Adv Virus Res 95:43-85
Durham, Natasha D; Chen, Benjamin K (2016) Measuring T Cell-to-T Cell HIV-1 Transfer, Viral Fusion, and Infection Using Flow Cytometry. Methods Mol Biol 1354:21-38
Law, Kenneth M; Komarova, Natalia L; Yewdall, Alice W et al. (2016) In Vivo HIV-1 Cell-to-Cell Transmission Promotes Multicopy Micro-compartmentalized Infection. Cell Rep 15:2771-83
Lee, H; Ruane, D; Law, K et al. (2015) Phenotype and function of nasal dendritic cells. Mucosal Immunol 8:1083-98
Yu, Jingyou; Li, Minghua; Wilkins, Jordan et al. (2015) IFITM Proteins Restrict HIV-1 Infection by Antagonizing the Envelope Glycoprotein. Cell Rep 13:145-156
Alvarez, Raymond A; Barría, Maria Ines; Chen, Benjamin K (2014) Unique features of HIV-1 spread through T cell virological synapses. PLoS Pathog 10:e1004513
Swartz, Talia H; Esposito, Anthony M; Durham, Natasha D et al. (2014) P2X-selective purinergic antagonists are strong inhibitors of HIV-1 fusion during both cell-to-cell and cell-free infection. J Virol 88:11504-15
Alvarez, Raymond A; Hamlin, Rebecca E; Monroe, Anthony et al. (2014) HIV-1 Vpu antagonism of tetherin inhibits antibody-dependent cellular cytotoxic responses by natural killer cells. J Virol 88:6031-46
Micsenyi, Amanda M; Zony, Chati; Alvarez, Raymond A et al. (2013) Postintegration HIV-1 infection of cervical epithelial cells mediates contact-dependent productive infection of T cells. J Infect Dis 208:1756-67
Costantino, Cristina Maria; Gupta, Achla; Yewdall, Alice W et al. (2012) Cannabinoid receptor 2-mediated attenuation of CXCR4-tropic HIV infection in primary CD4+ T cells. PLoS One 7:e33961

Showing the most recent 10 out of 16 publications