Sleep-like states are conserved throughout evolution, and chronic sleep disorders affect over 10% of humans. However, the genetic and neural mechanisms that regulate sleep remain poorly understood. Most sleep studies have used nocturnal mammals such as mice and rats, but it is unclear whether circadian aspects of sleep regulation are conserved with diurnal mammals such as humans. I will exploit the relatively simple yet conserved neural circuits and optical transparency of the zebrafish, a diurnal vertebrate, to test several hypotheses regarding the role of Prokineticin 2 in regulating sleep and circadian behaviors. First, I will test the hypothesis that Prokineticin 2 acts as a circadian signal to inhibit locomotor activity by performing gain and loss of function genetic experiments using high throughput locomotor activity and arousal threshold assays. Second, I will test the hypothesis that Prokineticin 2 neurons are active at night in zebrafish larvae using a bioluminescence reporter that monitors the activities of genetically specified neurons in freely behaving zebrafish larvae. Third, I will test the hypothesis that Prokinectin 2 inhibits wake-promoting neurons and activates sleep-promoting neurons by monitoring the activities of these neural populations in response to Prokineticin 2 overexpression. These experiments have the potential to clarify the neural mechanisms that mediate circadian output and regulate sleep, which may lead to new therapies for sleep and circadian related disorders.

Public Health Relevance

Sleep is essential for survival and maintaining cognitive function, and chronic sleep disorders such as insomnia and narcolepsy affect over 10% of the population, but the mechanisms that regulate sleep are poorly understood. I will examine the roles of in Prokineticin 2 in regulating sleep and circadian behaviors in zebrafish, offering the potential to improve our understanding of how sleep is regulated by circadian cues and to lead to novel therapies for the treatment of sleep and circadian related disorders.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Predoctoral Individual National Research Service Award (F31)
Project #
5F31NS077842-02
Application #
8432918
Study Section
Special Emphasis Panel (ZRG1-F03A-N (20))
Program Officer
He, Janet
Project Start
2011-09-30
Project End
2014-09-29
Budget Start
2012-09-30
Budget End
2013-09-29
Support Year
2
Fiscal Year
2012
Total Cost
$42,232
Indirect Cost
Name
California Institute of Technology
Department
Type
Schools of Arts and Sciences
DUNS #
009584210
City
Pasadena
State
CA
Country
United States
Zip Code
91125
Chen, Shijia; Reichert, Sabine; Singh, Chanpreet et al. (2017) Light-Dependent Regulation of Sleep and Wake States by Prokineticin 2 in Zebrafish. Neuron 95:153-168.e6
Chen, Shijia; Chiu, Cindy N; McArthur, Kimberly L et al. (2016) TRP channel mediated neuronal activation and ablation in freely behaving zebrafish. Nat Methods 13:147-50
Chiu, Cindy N; Rihel, Jason; Lee, Daniel A et al. (2016) A Zebrafish Genetic Screen Identifies Neuromedin U as a Regulator of Sleep/Wake States. Neuron 89:842-56
Chen, Shijia; Oikonomou, Grigorios; Chiu, Cindy N et al. (2013) A large-scale in vivo analysis reveals that TALENs are significantly more mutagenic than ZFNs generated using context-dependent assembly. Nucleic Acids Res 41:2769-78
Rossi, Paolo; Barbieri, Christopher M; Aramini, James M et al. (2013) Structures of apo- and ssDNA-bound YdbC from Lactococcus lactis uncover the function of protein domain family DUF2128 and expand the single-stranded DNA-binding domain proteome. Nucleic Acids Res 41:2756-68