Neuropathic pain is a worldwide health problem with limited treatment options due to gaps in our understanding of the underlying mechanisms of this disorder. Nerve-injury induced neuropathic pain is associated with changes in the expression of channels, proteins, and enzymes within the dorsal root ganglion (DRG). Kv1.2, one subtype of voltage-gated potassium channels (Kv) that are responsible for neuronal hyperpolarization, was found to be down-regulated in the injured DRG following nerve- injury. This down-regulation contributes to neuropathic pain genesis, however, the mechanism of how nerve injury causes DRG Kv1.2 channel down-regulation is still incompletely understood. DNA methylation is an epigenetic mechanism of gene transcription regulation that governs gene expression by interfering with interactions of transcription factors with gene promoter. The promoter of the Kv1.2 gene has the binding motif of Oct-1, a transcriptional activator. We recently found that DNMT3a, one of the enzymes that catalyze methylation at CpG islands in genes, was up-regulated in the injured DRG following spinal nerve ligation (SNL). Our preliminary data strongly suggest that DNMT3a is involved in nerve injury-induced DRG Kv1.2 downregulation and contributes to neuropathic pain. This proposal will determine whether and how nerve injury-induced DRG Kv1.2 down-regulation is triggered by DRG DNMT3a and whether DNMT3a regulates Kv1.2 expression and function, and neuronal excitability in DRG and contributes to neuropathic pain.
In Aim 1, we will first examine whether and how DNMT3a contributes to the nerve injury-induced downregulation of Kv1.2 in the injured DRG. We will determine if Kv1.2 reduction is dependent on DNMT3a methylation and decreased Oct 1 binding.
In Aim 2, we will observe whether blocking the SNL-induced increase in DRG DNMT3a alters Kv1.2 expression, total Kv current and excitability in DRG neurons and behavioral responses. The proposed studies will provide major conceptual advances in our understanding of the molecular mechanism of neuropathic pain and might open a door for developing new strategies for treating neuropathic pain.

Public Health Relevance

Neuropathic pain is poorly managed by standard analgesics, thus, understanding mechanisms of neuropathic pain genesis is important to improving clinical treatments and developing novel therapeutic strategies. The proposed studies will test the novel hypothesis that peripheral nerve injury insult may increase DNMT3a in the injured dorsal root ganglion and that this increase may contribute to the development of neuropathic pain through silencing of Kv1.2 expression. The proposed studies may provide new strategies for clinical intervention of neuropathic pain.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Predoctoral Individual National Research Service Award (F31)
Project #
5F31NS092310-02
Application #
9189639
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Oshinsky, Michael L
Project Start
2015-09-30
Project End
2018-09-29
Budget Start
2016-09-30
Budget End
2017-09-29
Support Year
2
Fiscal Year
2016
Total Cost
Indirect Cost
Name
Rutgers University
Department
Anesthesiology
Type
Schools of Medicine
DUNS #
078795851
City
Newark
State
NJ
Country
United States
Zip Code
Lutz, Brianna Marie; Wu, Shaogen; Gu, Xiyao et al. (2018) Endothelin type A receptors mediate pain in a mouse model of sickle cell disease. Haematologica 103:1124-1135
Zhao, Jian-Yuan; Liang, Lingli; Gu, Xiyao et al. (2017) DNA methyltransferase DNMT3a contributes to neuropathic pain by repressing Kcna2 in primary afferent neurons. Nat Commun 8:14712
Khariv, Veronika; Ni, Li; Ratnayake, Ayomi et al. (2017) Impaired sensitivity to pain stimuli in plasma membrane calcium ATPase 2 (PMCA2) heterozygous mice: a possible modality- and sex-specific role for PMCA2 in nociception. FASEB J 31:224-237
Zhang, Jun; Liang, Lingli; Miao, Xuerong et al. (2016) Contribution of the Suppressor of Variegation 3-9 Homolog 1 in Dorsal Root Ganglia and Spinal Cord Dorsal Horn to Nerve Injury-induced Nociceptive Hypersensitivity. Anesthesiology 125:765-78
Sun, Linlin; Lutz, Brianna Marie; Tao, Yuan-Xiang (2016) The CRISPR/Cas9 system for gene editing and its potential application in pain research. Transl Perioper Pain Med 1:22-33
Wu, Shaogen; Marie Lutz, Brianna; Miao, Xuerong et al. (2016) Dorsal root ganglion transcriptome analysis following peripheral nerve injury in mice. Mol Pain 12:
Yudin, Yevgen; Lutz, Brianna; Tao, Yuan-Xiang et al. (2016) Phospholipase C ?4 regulates cold sensitivity in mice. J Physiol 594:3609-28
Liang, Lingli; Gu, Xiyao; Zhao, Jian-Yuan et al. (2016) G9a participates in nerve injury-induced Kcna2 downregulation in primary sensory neurons. Sci Rep 6:37704