Ribonucleotide reductases (RNRs) are multi-subunit enzymes that are important targets for anti-cancer therapy and thus, directly relevant to human health. Intact complexes of class la RNRs, which include human and E. coli RNRs, have never been visualized by structural methods. Additionally, the oligomerization states of the inhibited class Ia RNR complexes are not well established, and it has been suggested that the inhibited RNRs may exist as higher order oligomers than the active complex. Incubation with the mechanism-based inhibitor and chemotherapeutic drug, gemcitabine (2',2'-difluoro-2'-deoxycytidine) diphosphate, has been shown to yield stable inhibited complexes of human and E. coli RNRs. Here, we propose a structural study of E. coli and human RNRs using X-ray crystallography and small-angle X-ray scattering (SAXS).
Aim 1 : To determine the quaternary structures of human and E. coli RNRs in solution using SAXS. The SAXS structures can be used to validate the docking model and future crystal structures of RNR complexes. The proposed solution SAXS studies will provide insight into how E. coli and human RNRs may form different oligomeric species in response to inhibitors and more significantly, how quaternary structure may regulate the overall activity of class la RNRs.
Aim 2 : To determine the crystal structure of human RNR inhibited by gemcitabine. Crystal structures of the gemcitabine-bound human RNR complex will allow us to identify how this drug may modify the active site and disrupt the catalytically essential radical transfer This structure will also allow us to observe the binding interactions between the subunits for the first time as well as provide insight into the future design of chemotherapeutic drugs that target this enzyme.
Ribonucleotide reductase is a protein found in all organisms that is an important target for cancer drugs such as gemcitabine. Unlike many other proteins that are drug targets, however, the complete structure of this protein has never been solved. By studying the structure of this protein, we will understand more about cancer drugs that are currently in use and aid future drug design efforts.