In western societies, complications resulting from coronary artery atherosclerosis are a leading cause of mortality. Epidemiological and clinical studies have shown that individual susceptibility to the development and progression of atherosclerotic lesions is influenced by """"""""traditional"""""""" systemic risk factors (e.g., hypercholesterolemia). In addition to these risk factors, local fluid mechanical stresses at the walls of coronary arteries, as well as mechanical stresses within the vessel walls, may also be atherosclerotic modulators. Therefore, it has been speculated that certain aspects of arterial geometry and motion, which vary substantially among individuals, may increase an individual's susceptibility to developing atherosclerosis. To test this, we will: (1) reconstruct, from high-resolution cine images, the in vivo kinematics of epicardial coronary arteries in apolipoproteinE-deficient mice over a cardiac cycle; (2) relate the evolution of atherosclerotic lesions to arterial motion and geometry; and (3) examine how arterial geometry and motion influence the vascular endothelial phenotype with the stage of disease. ? ? ?
Long, David S; Zhu, Hui; Friedman, Morton H (2013) Microscope-based near-infrared stereo-imaging system for quantifying the motion of the murine epicardial coronary arteries in vivo. J Biomed Opt 18:096013 |