Mitral regurgitation (MR) affects 2.4% of adult Americans [1] and increases mortality even when mild, with a strongly-graded relationship between severity and reduced survival.[2,3] Mitral valve repair with undersized ring annuloplasty has become the preferred surgical treatment for both functional and degenerative MR. However, several recent long-term studies have documented unexpectedly high recurrence rates of significant MR after surgery.[5-9] Improving the clinical outcome of valve repair requires a thorough pre-operative analysis of patient-specific in vivo valve morphology, to predict which patients will benefit from valve repair over replacement and to identify repair strategies that target patient-specific distortions in valve geometry. Real-time 3D echocardiography (rt-3DE) is the most practical tool for inspection of in vivo valve morphology and function in the operating room. However, the current methods for examining rt-3DE image data are both inefficient and limited in the amount of information conveyed to the surgical team. Therefore, the goal of this proposal is to develop and validate a fully automated 4D spatiotemporal segmentation method that automatically generates dynamic geometric models of the mitral valve from rt-3DE image data. It is hypothesized that these models can accurately and robustly capture the dynamic morphology of the in vivo mitral valve. To investigate this hypothesis, a database of expert-labeled rt-3DE atlases of the mitral valve will be constructed in Specific Aim 1. These atlases encode information about dynamic valve morphology in a population of normal and diseased subjects and serve as training data for 4D automatic segmentation.
In Specific Aim 2, a fully automatic 4D segmentation of the mitral leaflets will be implemented using the reference atlases constructed in Specific Aim 1. The proposed algorithm integrates complementary probabilistic segmentation and shape modeling techniques to automatically generate 4D patient-specific shape models of the mitral valve from rt-3DE images.
In Specific Aim 3, the 4D segmentation algorithm will be validated using manual image analysis as a gold standard. The accuracy and reproducibility of the method will be assessed, and the algorithm will be optimized for performance efficiency. Upon successful completion of this project, surgeons will have an efficient tool for pre-operative valve assessment that will provide unprecedented visual and quantitative data for guidance of mitral valve repair surgery.

Public Health Relevance

This project develops a novel, fully automatic image analysis tool for mitral valve assessment using real-time three-dimensional echocardiography. To address the growing challenge of mitral valve repair surgery, this tool will provide unprecedented visual and quantitative information about in vivo dynamic valve morphology, allowing for an optimized pre-operative patient-specific approach to mitral valve surgery.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Postdoctoral Individual National Research Service Award (F32)
Project #
5F32HL119010-02
Application #
8773193
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Meadows, Tawanna
Project Start
2013-07-15
Project End
2016-07-14
Budget Start
2014-07-15
Budget End
2015-07-14
Support Year
2
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of Pennsylvania
Department
Surgery
Type
Schools of Medicine
DUNS #
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Pouch, Alison M; Aly, Ahmed H; Lai, Eric K et al. (2017) Spatiotemporal Segmentation and Modeling of the Mitral Valve in Real-Time 3D Echocardiographic Images. Med Image Comput Comput Assist Interv 10433:746-754
Bavo, A M; Pouch, A M; Degroote, J et al. (2017) Patient-specific CFD models for intraventricular flow analysis from 3D ultrasound imaging: Comparison of three clinical cases. J Biomech 50:144-150
Aggarwal, Ankush; Pouch, Alison M; Lai, Eric et al. (2016) In-vivo heterogeneous functional and residual strains in human aortic valve leaflets. J Biomech 49:2481-90
Pouch, Alison M; Jackson, Benjamin M; Lai, Eric et al. (2016) Modeling the Myxomatous Mitral Valve With Three-Dimensional Echocardiography. Ann Thorac Surg 102:703-710
Pouch, Alison M; Tian, Sijie; Takabe, Manabu et al. (2015) Segmentation of the Aortic Valve Apparatus in 3D Echocardiographic Images: Deformable Modeling of a Branching Medial Structure. Stat Atlases Comput Models Heart 8896:196-203
Shang, Eric K; Lai, Eric; Pouch, Alison M et al. (2015) Validation of semiautomated and locally resolved aortic wall thickness measurements from computed tomography. J Vasc Surg 61:1034-40
Pouch, Alison M; Tian, Sijie; Takebe, Manabu et al. (2015) Medially constrained deformable modeling for segmentation of branching medial structures: Application to aortic valve segmentation and morphometry. Med Image Anal 26:217-31
Witschey, Walter R T; Pouch, Alison M; McGarvey, Jeremy R et al. (2014) Three-dimensional ultrasound-derived physical mitral valve modeling. Ann Thorac Surg 98:691-4
Pouch, Alison M; Vergnat, Mathieu; McGarvey, Jeremy R et al. (2014) Statistical assessment of normal mitral annular geometry using automated three-dimensional echocardiographic analysis. Ann Thorac Surg 97:71-7
Pouch, A M; Wang, H; Takabe, M et al. (2014) Fully automatic segmentation of the mitral leaflets in 3D transesophageal echocardiographic images using multi-atlas joint label fusion and deformable medial modeling. Med Image Anal 18:118-29

Showing the most recent 10 out of 12 publications