Depression is among the most common, disabling, and expensive disorders afflicting our nation's veterans. Cellular and molecular studies of circadian (ca. 24 hr) biological clocks have recently provided tantalizing clues that clock defects may be involved not just in sleep disorders but in a wide range of clinical maladies, including mood disorders. Objectives: Our long-term goal is to define the precise relationship between genetically determined cellular circadian clock function and human mood dysregulation. Our overall hypothesis is that normal mood regulation requires proper circadian timing within brain circuits, and that mood disorders are therefore associated with dysfunction of the circadian clock at a cellular level. We hypothesize that vulnerability to mood disorders arises from clock defects not in the hypothalamic suprachiasmatic nucleus (SCN), the brain's master circadian pacemaker, but rather in the nucleus accumbens (NAc), a brain region implicated in mood regulation that contains a separate circadian clock. Our specific hypotheses are that: (1) circadian clocks are weak in human cells from depressed patients, (2) circadian clocks are also weak in NAc neurons in a mouse model of depression, and (3) weak circadian clocks in the NAc can increase vulnerability to depression in mice by removing normal daily cyclic repression of the CREB signaling pathway by the clock protein CRY. Specifically, we aim to test for circadian dysfunction in skin cells from depressed patients and in neurons from mice exhibiting depression-like behavior. We will then test whether manipulating the circadian clock or CREB signaling in NAc cells of mice alters their vulnerability to depression-like behavior. Research Design & Methodology: We will use viral vectors to introduce a firefly luciferase circadian reporter gene into human skin cells obtained by our collaborators. We will then monitor circadian rhythms of cell bioluminescence by luminometry and single-cell imaging, and analyze comprehensively the functioning of the clock, as well as expression levels of core clock genes. Next, we will use behaviorally induced learned helplessness as a mouse model of depression. Mice will harbor a bioluminescent circadian reporter, allowing us to test circadian clock function in NAc neuronal cells as we did in human cells. We will also measure levels of core clock gene expression and CREB activity in NAc brain slices, expecting to find low Cry expression and high P-CREB. Finally, we will manipulate clock or CREB function in mouse NAc by injection of various inhibitory RNAs or CREB constructs, respectively, followed by testing vulnerability to induced learned helplessness. We expect that weakening NAc rhythms by Cry knockdown, but not by knockdown of a different clock gene, will increase vulnerability to learned helplessness, and that selectively reducing CREB function at dawn, by properly phased rhythmic expression of a dominant-negative CREB construct, will be optimal for reducing vulnerability. Clinical Relationships: Our goal is an improved understanding of the relationship between neuronal circadian clocks and depression. This project may lead to improved diagnostic and therapeutic approaches to mood disorders, which are major afflictions and sources of disability for veterans.

Public Health Relevance

Of veterans returning from Iraq and Afghanistan seeking health care at V.A. facilities 2001-2007, 35% received a mental health diagnosis (Cohen BE, J Gen Intern Med 25:18, 2010). Mood disorders are among the most common of these diagnoses, and leading causes of death and disability. Furthermore, the V.A. spends billions of dollars per year on healthcare for veterans with these disorders. The biological basis of mood disorders is poorly understood, however, and novel approaches are needed. Dysfunction of circadian (ca. 24 hr) biological rhythms has been suspected for many years to play a role in mood disorders. With recent developments in circadian biology, it is now possible to test the function of the circadian clock a the molecular level in cells cultured from human patient skin samples, or in brain cells from mouse models of mood disorders, where the clocks can also be manipulated. The studies proposed here, by delineating the role of circadian clocks in depression, could lead to improved treatments for this common disorder afflicting our nation's veterans.

Agency
National Institute of Health (NIH)
Institute
Veterans Affairs (VA)
Type
Non-HHS Research Projects (I01)
Project #
5I01BX001146-07
Application #
9605183
Study Section
Neurobiology R (NURR)
Project Start
2012-01-01
Project End
2020-09-30
Budget Start
2018-10-01
Budget End
2019-09-30
Support Year
7
Fiscal Year
2019
Total Cost
Indirect Cost
Name
VA San Diego Healthcare System
Department
Type
DUNS #
073358855
City
San Diego
State
CA
Country
United States
Zip Code
92161
Noguchi, Takako; Harrison, Elizabeth M; Sun, Jonathan et al. (2018) Circadian rhythm bifurcation induces flexible phase resetting by reducing circadian amplitude. Eur J Neurosci :
Porcu, Alessandra; Riddle, Malini; Dulcis, Davide et al. (2018) Photoperiod-Induced Neuroplasticity in the Circadian System. Neural Plast 2018:5147585
Walton, Zandra E; Patel, Chirag H; Brooks, Rebekah C et al. (2018) Acid Suspends the Circadian Clock in Hypoxia through Inhibition of mTOR. Cell 174:72-87.e32
Mei, Long; Fan, Yanyan; Lv, Xiaohua et al. (2018) Long-term in vivo recording of circadian rhythms in brains of freely moving mice. Proc Natl Acad Sci U S A 115:4276-4281
Kiessling, Silke; Beaulieu-Laroche, Lou; Blum, Ian D et al. (2017) Enhancing circadian clock function in cancer cells inhibits tumor growth. BMC Biol 15:13
Noguchi, Takako; Lo, Kevin; Diemer, Tanja et al. (2016) Lithium effects on circadian rhythms in fibroblasts and suprachiasmatic nucleus slices from Cry knockout mice. Neurosci Lett 619:49-53
Landgraf, Dominic; Long, Jaimie E; Proulx, Christophe D et al. (2016) Genetic Disruption of Circadian Rhythms in the Suprachiasmatic Nucleus Causes Helplessness, Behavioral Despair, and Anxiety-like Behavior in Mice. Biol Psychiatry 80:827-835
McCarthy, Michael J; Le Roux, Melissa J; Wei, Heather et al. (2016) Calcium channel genes associated with bipolar disorder modulate lithium's amplification of circadian rhythms. Neuropharmacology 101:439-48
McCarthy, M J; Wei, H; Marnoy, Z et al. (2013) Genetic and clinical factors predict lithium's effects on PER2 gene expression rhythms in cells from bipolar disorder patients. Transl Psychiatry 3:e318
McCarthy, Michael J; Fernandes, Malcolm; Kranzler, Henry R et al. (2013) Circadian clock period inversely correlates with illness severity in cells from patients with alcohol use disorders. Alcohol Clin Exp Res 37:1304-10