The long-term goals of this Merit project are focused on characterizing the mechanisms, which distinguish the actions of insulin and IGF-1 in skeletal cells. During the last funding period we identified a novel endocrine loop through which insulin stimulates the production of osteocalcin by osteoblasts, which in turn, functions as a hormone to increase pancreatic insulin production and enhance insulin sensitivity in peripheral tissues. Additional studies defined the insulin targe mTOR as a key checkpoint that integrates osteoblast developmental programs with fuel consumption and energy metabolism. Our findings, together with complementary work from other labs, suggest a regulatory link between osteoblasts and global energy homeostasis. Implicit in this model is the notion that bone formation, remodeling, and repair are energy- expensive processes, which require osteoblasts to adjust their fuel metabolism and bioenergetics to accomplish stage-specific functions during their life cycle. New preliminary data described in this proposal demonstrate that the ability of osteoblasts to oxidize glucose and fatty acids varies with their differentiation status and is controlled by distinct developmental signals. Thus, insulin receptor signaling in osteoblasts is required for GLUT4 dependent glucose uptake and oxidation, whereas Wnt/LRP5 signaling regulates the activity of key enzymes in ?-oxidation of fatty acids. In this project, we will use new genetic mouse models to determine the impact of energy substrate oxidation and metabolism by osteoblasts on global fuel flux in adult bone and in response to anabolic therapies. We will test the hypothesis that fuel consumption by osteoblasts and osteocytes significantly impact global fuel requirements and that these cells adjust their bioenergetic programs to meet different demands during their life span and in settings where in osteoblast energy demands are heightened.
In Specific Aim 1, we will determine the relative requirement for glucose and fatty acid as substrates for oxidative metabolism in mature mouse bone by examining the bone and metabolic phenotypes of mice engineered to be deficient for obligate enzymes in glucose (hexokinase 2, Hk2) and fatty acid (carnitine palmitoyltransferase-2, Cpt2) metabolism in mature osteoblasts and osteocytes.
In Specific Aim 2, we will determine the importance of osteoblast fuel consumption during acute episodes of anabolic activity. Specifically, we will determine the impact of acute loss of either glucose (Hk2 KO) or fatty acid oxidation (Cpt2 KO) on load induced bone formation and in response to an anabolic regimen of anti- sclerostin antibody. While these studies have been conducted in mice, their significance to human health is supported by an increasing body of evidence linking osteocalcin levels and other markers for osteoblast acidity with body mass index, fat mass, insulin secretion, and insulin resistance. We firmly believe that the information gained from our studies will improve understanding of how the metabolic activity of the skeleton impacts global metabolic activity. Such information is expected to significantly improve the diagnosis and management and treatment and prevention of the related metabolic disturbances prevalent in aging Veterans.

Public Health Relevance

Our studies obtained during the previous Merit Review Award revealed the existence of a novel endocrine regulatory loop through which insulin signaling in the osteoblast participates in the regulation of global energy metabolism. In the proposed Merit Review Award, we will determine the preferred fuel substrate for osteoblasts and determine the impact of substrate restriction on bone mass and energy expenditure. This information, while basic in nature, is expected to ultimately impact the management, treatment and prevention of diabetes and related metabolic disturbances prevalent in aging Veterans.

Agency
National Institute of Health (NIH)
Institute
Veterans Affairs (VA)
Type
Non-HHS Research Projects (I01)
Project #
5I01BX001234-06
Application #
9277191
Study Section
Endocrinology B (ENDB)
Project Start
2011-04-01
Project End
2020-06-30
Budget Start
2017-07-01
Budget End
2018-06-30
Support Year
6
Fiscal Year
2017
Total Cost
Indirect Cost
Name
Baltimore VA Medical Center
Department
Type
DUNS #
796532609
City
Baltimore
State
MD
Country
United States
Zip Code
21201
Kushwaha, Priyanka; Wolfgang, Michael J; Riddle, Ryan C (2018) Fatty acid metabolism by the osteoblast. Bone 115:8-14
Riddle, Ryan C; Clemens, Thomas L (2017) Bone Cell Bioenergetics and Skeletal Energy Homeostasis. Physiol Rev 97:667-698
Kim, Soohyun P; Li, Zhu; Zoch, Meredith L et al. (2017) Fatty acid oxidation by the osteoblast is required for normal bone acquisition in a sex- and diet-dependent manner. JCI Insight 2:
Tomlinson, Ryan E; Li, Zhi; Li, Zhu et al. (2017) NGF-TrkA signaling in sensory nerves is required for skeletal adaptation to mechanical loads in mice. Proc Natl Acad Sci U S A 114:E3632-E3641
Zoch, Meredith L; Abou, Diane S; Clemens, Thomas L et al. (2016) In vivo radiometric analysis of glucose uptake and distribution in mouse bone. Bone Res 4:16004
Zoch, Meredith L; Clemens, Thomas L; Riddle, Ryan C (2016) New insights into the biology of osteocalcin. Bone 82:42-9
Li, Zhu; Frey, Julie L; Wong, G William et al. (2016) Glucose Transporter-4 Facilitates Insulin-Stimulated Glucose Uptake in Osteoblasts. Endocrinology 157:4094-4103
Zhang, Q; Riddle, R C; Clemens, T L (2015) Bone and the regulation of global energy balance. J Intern Med 277:681-9
Frey, Julie L; Li, Zhu; Ellis, Jessica M et al. (2015) Wnt-Lrp5 signaling regulates fatty acid metabolism in the osteoblast. Mol Cell Biol 35:1979-91
Riddle, Ryan C; Frey, Julie L; Tomlinson, Ryan E et al. (2014) Tsc2 is a molecular checkpoint controlling osteoblast development and glucose homeostasis. Mol Cell Biol 34:1850-62

Showing the most recent 10 out of 11 publications