In our prior studies utilizing myeloma specific antigen (idiotype) and multiple myeloma (MM) cell-based vaccination, we observed induction of antigen-specific immune responses; however, clinical responses were not seen. To achieve clinically meaningful immune response, in the previous funding period, we further investigated immune-competence in MM. We evaluated development of immune response to Hepatitis B vaccination in patients with MM and monoclonal gammopathy of undetermined significance (MGUS) and observed that immune function is significantly impaired in MM and interestingly also in patients with MGUS. Our further investigations have identified both dysfunctional T regulatory cells that affect immune homeostasis in myeloma, and up-regulated Th17 cells that affects both myeloma cell growth and survival as well as suppress Th1 immune responses. Moreover these cells produce cytokines (IL-17, IL-21, IL-22, IL-23 and IL- 27) with significant immunosuppressive activity. A significant body of information has emerged supporting a critical role for the bone marrow (BM) microenvironment in supporting not only MM cell growth, and survival, but also in inducing the immune dysfunction. Based on the information that interleukin-6 (IL-6), transforming growth factor-beta (TGF-), and IL-1 are elevated in MM and may play an important role in T cell function we hypothesize that conditions generated in BM microenvironment by interaction between MM cells and bone marrow stromal cells (BMSC) modulate the immune responses to support tumor progression in MGUS and in MM and targeting these conditions may allow us to improve immune responses and develop immunotherapeutic strategies. Towards this overall objective we will evaluate the role of regulatory T cells (Treg) and their imbalance with TH17 cells in the promotion of immune dysfunction and tumor growth in MM (Specific Aim 1). In this objective we will first investigate both qualitative and quantitative aberrations and molecular determinants of regulatory T cell dysfunction and its interplay with Th17 cells in the BM microenvironment and peripheral circulation in MM and MGUS. We will utilize paired samples from patients' with MGUS progressing to myeloma to understand the change in immune make up from MGUS progression to MM. Additionally, we will evaluate the direct and indirect effects of pro-inflammatory cytokines produced by Treg and Th17 cells on MM cell growth and survival and immune response. We will investigate modulators of immune responses to overcome immune suppressive effects observed in MM to augment effector T cell function (Specific Aim 2). We will characterize the anti-MM effector T cell responses in peripheral blood and bone marrows of MGUS and MM patients compared with normal individuals against MM-related antigens Xbp-1, OFD-1 and Sox-2 and then evaluate modulators of immune function (anti- IL-17, anti-IL-6 & Revlimid) alone and in combination to improve T effector cell-functions in MM. As we define the mediators of immune suppression in MM and investigate agents able to overcome the suppressive effects, we will develop antigen specific peptide-based vaccination strategy in combination with modulators of immune function. (Specific Aim 3). We have analyzed our large clinically annotated gene expression profile, alternate splicing and copy number alterations data from myeloma patients and identified and validated clinically critical genes. We will now evaluate immunologically relevant peptides targeting these genes for CTL response. Finally we will combine the immune modulators and peptide vaccination to generate robust immune response. The proposed studies will identify the mechanism of immune suppression in myeloma, develop methods to improve immune function and develop peptide-based vaccination strategies to preclinical rational for their clinical application.

Public Health Relevance

Multiple myeloma (MM) is a B-cell malignancy whose incidence and prevalence are increasing with age. The median age at the diagnosis is 70 years and African Americans are affected at twice the rate of Caucasians. The elderly patient population at the VA Medical Center has increased risk of developing MM. In a direct review of VA records over 4,000 patients with MM were seen in the VA in 2007. The effective therapy for MM is high-dose chemotherapy with bone marrow transplantation for which most of the veterans are not eligible due to their age, performance status, or state of the disease. The proposed studies on understanding immune dysfunction and developing immunotherapy of MM will lead to a new treatment modality applicable at any age in veterans. The veteran population suffering from MM will benefit from this state-of-the-art treatment modality.

Agency
National Institute of Health (NIH)
Institute
Veterans Affairs (VA)
Type
Non-HHS Research Projects (I01)
Project #
5I01BX001584-03
Application #
8762430
Study Section
Hematology (HEMA)
Project Start
2012-10-01
Project End
2016-09-30
Budget Start
2014-10-01
Budget End
2015-09-30
Support Year
3
Fiscal Year
2015
Total Cost
Indirect Cost
Name
VA Boston Health Care System
Department
Type
DUNS #
034432265
City
Boston
State
MA
Country
United States
Zip Code
02130
Szalat, R; Samur, M K; Fulciniti, M et al. (2018) Nucleotide excision repair is a potential therapeutic target in multiple myeloma. Leukemia 32:111-119
Amodio, Nicola; Stamato, Maria Angelica; Juli, Giada et al. (2018) Drugging the lncRNA MALAT1 via LNA gapmeR ASO inhibits gene expression of proteasome subunits and triggers anti-multiple myeloma activity. Leukemia 32:1948-1957
Bolli, Niccolò; Maura, Francesco; Minvielle, Stephane et al. (2018) Genomic patterns of progression in smoldering multiple myeloma. Nat Commun 9:3363
GullĂ , A; Hideshima, T; Bianchi, G et al. (2018) Protein arginine methyltransferase 5 has prognostic relevance and is a druggable target in multiple myeloma. Leukemia 32:996-1002
Kumar, Subodh; Talluri, Srikanth; Pal, Jagannath et al. (2018) Role of apurinic/apyrimidinic nucleases in the regulation of homologous recombination in myeloma: mechanisms and translational significance. Blood Cancer J 8:92
Samur, Mehmet Kemal; Minvielle, Stephane; Gulla, Annamaria et al. (2018) Long intergenic non-coding RNAs have an independent impact on survival in multiple myeloma. Leukemia 32:2626-2635
Bolli, N; Biancon, G; Moarii, M et al. (2017) Analysis of the genomic landscape of multiple myeloma highlights novel prognostic markers and disease subgroups. Leukemia :
Cleynen, A; Szalat, R; Kemal Samur, M et al. (2017) Expressed fusion gene landscape and its impact in multiple myeloma. Nat Commun 8:1893
Cetin, Arif E; Stevens, Mark M; Calistri, Nicholas L et al. (2017) Determining therapeutic susceptibility in multiple myeloma by single-cell mass accumulation. Nat Commun 8:1613
Fulciniti, Mariateresa; Martinez-Lopez, Joaquin; Senapedis, William et al. (2017) Functional role and therapeutic targeting of p21-activated kinase 4 in multiple myeloma. Blood 129:2233-2245

Showing the most recent 10 out of 26 publications