The Leishmania species protozoa cause a spectrum of human diseases, the most severe of which is visceral leishmaniasis (VL). VL is a potentially fatal disease in which parasites disseminate throughout reticuloendothelial organs of the host, causing a chronic wasting syndrome with profound suppression of host immune responses. After being deposited in human dermis by the sand fly vector, the promastigote form of the parasite is taken up through phagocytosis by host cells of myeloid origin, where it transforms to the obligate intracellular amastigote form. Throughout chronic infection, parasites survive as obligate intracellular parasites primarily in tissue macrophages. It was long believed that Leishmania reside exclusively in cells of monocytic origin throughout infection of the mammalian host. It is now apparent that parasites infect other myeloid cell types. Neutrophils and inflammatory monocytes are the first cells to arrive at the infection site and internalize Leishmania. Preliminary studiesin this application demonstrate that Lic continue to recruit myeloid cells to the infection site throughout chronic progressive infection. Heterogeneous populations of immature myeloid cells with suppressive functions, called Myeloid Derived Suppressor Cells or MDSCs, have been shown to suppress adaptive immune responses and modulate macrophage phenotype in models of cancer or transplantation. We propose herein to examine that hypothesis that myeloid cells infiltrating the sites of disseminated Lic infection have a suppressive phenotype. The NLR proteins are cytosolic proteins that respond to either pathogen-associated or danger- associated molecular patterns. Some of the NLR proteins activate the multi-protein inflammasome complex, resulting in activation of caspase-1, release of IL-1? and IL-18, and a potent inflammatory response. The non-inflammasome forming NLR proteins also affect host defenses through varied mechanisms, many of which are yet ill-defined. We hypothesize that myeloid cells infiltrating the sites of parasite dissemination are responsible in part for the immunosuppression of chronic VL, and that NLRs are critical determinants of myeloid cell function during Lic infection. We propose to investigate the following aims.
AIM #1. Identify myeloid cells infiltratin the sites of Lic localization throughout infection. Hypothesis: Mature neutrophils and inflammatory monocytes infiltrate the site of parasite inoculation during acute infection, whereas granulocytic and monocytic myeloid derived suppressor cells (MDSCs) localize to the sites of parasite dissemination once chronic infection is established.
AIM #2. Determine whether NLR proteins exacerbate or ameliorate the course of visceral leishmaniasis in murine models. Hypothesis: Nlrp10 is essential for recruitment of myeloid cells, whereas Nlrp12 is required for the development of a protective type 1 immune response.

Public Health Relevance

The Leishmania species protozoa cause a divergent group of diseases, the most severe of which is visceral leishmaniasis. Underlying all Leishmania infections is the ability of the parasites to suppress or evade effective host immune responses. Military personnel in the Middle East and Latin America are at high risk for leishmaniasis. Indeed, major outbreaks of leishmaniasis affected hundreds of military personnel during recent operations in Iraq and Afghanistan. New forms of leishmaniasis are emerging and the incidence of disease is increasing, but our limited knowledge of disease pathogenesis and limited repertoire of drugs leaves us ill-prepared for this disease. We propose in this application to carefully examine the pathologic immune responses that allow Leishmania to survive in a host. The ultimate goal of this research is discover immune pathways that could become the targets of new forms of treatment for all types of leishmaniasis.

Agency
National Institute of Health (NIH)
Institute
Veterans Affairs (VA)
Type
Non-HHS Research Projects (I01)
Project #
1I01BX001983-01A1
Application #
8541341
Study Section
Infectious Diseases B (INFB)
Project Start
2013-10-01
Project End
2017-09-30
Budget Start
2013-10-01
Budget End
2014-09-30
Support Year
1
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Iowa City VA Medical Center
Department
Type
DUNS #
028084333
City
Iowa City
State
IA
Country
United States
Zip Code
52245
Sousa, Rosana; Andrade, Viviane M; Bair, Thomas et al. (2018) Early Suppression of Macrophage Gene Expression by Leishmania braziliensis. Front Microbiol 9:2464
Lima, Iraci Duarte; Lima, Adila L M; Mendes-Aguiar, Carolina de Oliveira et al. (2018) Changing demographics of visceral leishmaniasis in northeast Brazil: Lessons for the future. PLoS Negl Trop Dis 12:e0006164
Rodríguez, Nilda E; Lima, Iraci D; Gaur Dixit, Upasna et al. (2018) Epidemiological and Experimental Evidence for Sex-Dependent Differences in the Outcome of Leishmania infantum Infection. Am J Trop Med Hyg 98:142-145
Marshall, Skye; Kelly, Patrick H; Singh, Brajesh K et al. (2018) Extracellular release of virulence factor major surface protease via exosomes in Leishmania infantum promastigotes. Parasit Vectors 11:355
Clay, Gwendolyn M; Valadares, Diogo G; Graff, Joel W et al. (2017) An Anti-Inflammatory Role for NLRP10 in Murine Cutaneous Leishmaniasis. J Immunol 199:2823-2833
Davis, Richard E; Sharma, Smriti; Conceição, Jacilara et al. (2017) Phenotypic and functional characteristics of HLA-DR+ neutrophils in Brazilians with cutaneous leishmaniasis. J Leukoc Biol 101:739-749
Scorza, Breanna M; Wacker, Mark A; Messingham, Kelly et al. (2017) Differential Activation of Human Keratinocytes by Leishmania Species Causing Localized or Disseminated Disease. J Invest Dermatol 137:2149-2156
Rodríguez, N E; Lockard, R D; Turcotte, E A et al. (2017) Lipid bodies accumulation in Leishmania infantum-infected C57BL/6 macrophages. Parasite Immunol 39:
Kelly, Patrick H; Bahr, Sarah M; Serafim, Tiago D et al. (2017) The Gut Microbiome of the Vector Lutzomyia longipalpis Is Essential for Survival of Leishmania infantum. MBio 8:
Christiaansen, Allison F; Dixit, Upasna Gaur; Coler, Rhea N et al. (2017) CD11a and CD49d enhance the detection of antigen-specific T cells following human vaccination. Vaccine 35:4255-4261

Showing the most recent 10 out of 31 publications