Activated HSCs (aHSCs) participate in liver fibrogenesis and promote the development of liver tumor, the two most devastating sequela of chronic liver disease. Our rigorous efforts to screen Wnt- ?-catenin target genes in aHSCs, identified Scd (stearoyl-CoA desaturase) which encodes an ER enzyme responsible for the synthesis of mono-unsaturated fatty acids (MUFA) and is implicated in fatty liver, cancer and stemness. Scd is upregulated in a Wnt-dependent manner by the ability of ?- catenin to bind to SREBP-1c and potentiate nearly 10-fold SREBP-1c-induce transcription. Induction of Scd2, an isoform dominantly expressed in HSCs is required for HSC activation and provides a positive forward loop to amplify canonical Wnt pathway via Lrp5/6 mRNA stability. This novel loop is initiated by SCD-generated MUFA interfering nuclear import of the mRNA binding protein HuR via Transportin (TNPO) and Ran1 GTPase, resulting in HuR cytoplasmic accumulation, HuR binding to Lrp5/6 mRNA 3'UTR, and their stabilization. SCD inhibition or Scd2 silencing abrogates LRP5/6 expression and stabilization of ?-catenin in aHSCs, and attenuates liver fibrosis in mice. Intriguingly, the Wnt-SCD2-LRP5/6 loop also exists in liver tumor-initiating stem-cell like cells (TICs) and Huh7 cells and is required for their self-renewal and tumor-initiating activity, establishing this novel pathway as a functional core in both aHSCs and TICs/HCC cells. We further demonstrate that conditional Scd2 KO in aHSCs (Scd2 cKO) incapacitates aHSCs to promote TIC-initiated tumor growth in nude mice and suppresses tumor cell Scd2 expression and natural development of liver tumors induced by diethyl nitrosamine (DEN) in mice. Our most recent lipidomic and transcriptomic analyses of non-tumor liver tissues of Scd2 cKO mice, reveal global suppression of tumor-promoting lipid reprogramming in cholesterol synthesis and eicosanoid metabolism. Based on these results, we hypothesize that SCD2-HuR-Wnt positive loop established by aHSCs induces tumor-promoting lipid reprogramming in microenvironment by targeting genes involved in cholesterol synthesis and eicosanoid generation and metabolism. To test this hypothesis and the mechanisms of the tumor enhancer role of HSC SCD2, we will address the following aims:
Aim 1. To determine whether Scd2 conditional KO in hepatocytes prevents DEN-induced liver tumor development by using Scd2ff;Alb-Cre vs. Scd2ff mice.
Aim 2. To determine whether HSC SCD2 enhances tumor initiation vs. tumor promotion by timing Scd2 ablation using Scd2ff;Col1a1-Cre-ERT2.
Aim -3. To determine how SCD2 in aHSCs supports tumor promoting lipid microenvironment.
Aim 3 -1. To determine the mechanism of ?-catenin dependent regulation of HMGCR transcription.
Aim 3 -2. To determine whether ?-catenin transcriptionally stimulates FADS1/2 and LTA4H via TCF.
Aim 3 -3. To determine if LTA4H mRNA is up-regulated by HuR via SCD.
Aim 3 -4. To validate SCD-mediated lipid reprogramming in HCC-PDX (patient-derived xenograft) model. Collectively, these efforts will define the mechanisms of the novel tumor enhancer role of HSC SCD2 and help identify new therapeutic targets for HCC.

Public Health Relevance

The proposed study is designed to better understand molecular mechanisms underlying activation of the liver cell type called hepatic stellate cells (HSCs) which cause cirrhosis. Our research has discovered HSCs promote liver tumor development by actions of the enzyme called stearoyl Co-A desaturase (SCD). Proposed research will aim to elucidate how this tumor promotion takes place using the genetic mouse models, global screening for lipids in tumor microenvironment, global gene expression profiling, isolation of HSCs from the liver tumor models and characterizing lipids and lipid-encapsulated molecules released by tumor-associated HSCs. These efforts will help identify new therapeutic targets for cirrhosis and liver cancer which are common complications of chronic liver disease among veteran patients.

Agency
National Institute of Health (NIH)
Institute
Veterans Affairs (VA)
Type
Non-HHS Research Projects (I01)
Project #
5I01BX001991-07
Application #
10045559
Study Section
Gastroenterology (GAST)
Project Start
2013-10-01
Project End
2022-09-30
Budget Start
2020-10-01
Budget End
2021-09-30
Support Year
7
Fiscal Year
2021
Total Cost
Indirect Cost
Name
VA Greater Los Angeles Healthcare System
Department
Type
DUNS #
066689118
City
Los Angeles
State
CA
Country
United States
Zip Code
90073
Wu, Raymond; Murali, Ramachandran; Kabe, Yasuaki et al. (2018) Baicalein Targets GTPase-Mediated Autophagy to Eliminate Liver Tumor-Initiating Stem Cell-Like Cells Resistant to mTORC1 Inhibition. Hepatology 68:1726-1740
Yang, Zemin; Liu, Yu; Qin, Lan et al. (2017) Cathepsin H-Mediated Degradation of HDAC4 for Matrix Metalloproteinase Expression in Hepatic Stellate Cells: Implications of Epigenetic Suppression of Matrix Metalloproteinases in Fibrosis through Stabilization of Class IIa Histone Deacetylases. Am J Pathol 187:781-797
Lai, Keane K Y; Kweon, Soo-Mi; Chi, Feng et al. (2017) Stearoyl-CoA Desaturase Promotes Liver Fibrosis and Tumor Development in Mice via a Wnt Positive-Signaling Loop by Stabilization of Low-Density Lipoprotein-Receptor-Related Proteins 5 and 6. Gastroenterology 152:1477-1491
Eguchi, Akiko; Lazaro, Raul G; Wang, Jiaohong et al. (2017) Extracellular vesicles released by hepatocytes from gastric infusion model of alcoholic liver disease contain a MicroRNA barcode that can be detected in blood. Hepatology 65:475-490
McDaniel, Kelly; Huang, Li; Sato, Keisaku et al. (2017) The let-7/Lin28 axis regulates activation of hepatic stellate cells in alcoholic liver injury. J Biol Chem 292:11336-11347
Mandrekar, Pranoti; Bataller, Ramon; Tsukamoto, Hidekazu et al. (2016) Alcoholic hepatitis: Translational approaches to develop targeted therapies. Hepatology 64:1343-55
Page, Agata; Paoli, Pier; Moran Salvador, Eva et al. (2016) Hepatic stellate cell transdifferentiation involves genome-wide remodeling of the DNA methylation landscape. J Hepatol 64:661-73
Chen, Jian; Yao, Zhi-Xing; Chen, Jiun-Sheng et al. (2016) TGF-?/?2-spectrin/CTCF-regulated tumor suppression in human stem cell disorder Beckwith-Wiedemann syndrome. J Clin Invest 126:527-42
Kweon, Soo-Mi; Chi, Feng; Higashiyama, Reiichi et al. (2016) Wnt Pathway Stabilizes MeCP2 Protein to Repress PPAR-? in Activation of Hepatic Stellate Cells. PLoS One 11:e0156111
Xu, Jun; Chi, Feng; Guo, Tongsheng et al. (2015) NOTCH reprograms mitochondrial metabolism for proinflammatory macrophage activation. J Clin Invest 125:1579-90

Showing the most recent 10 out of 16 publications