Liver fibrosis is the result of chronic liver damage from various etiologies including alcohol abuse, obesity, or viral hepatitis. Chronic liver disease may progress to cirrhosis, an end stage disease and major cause of morbidity and mortality in the United States and in particular among Veterans. Patients with chronic liver disease show intestinal bacterial overgrowth and dysbiosis. They also demonstrate increased intestinal permeability, and disease severity correlates with systemic levels of bacterial products. Although experimental liver fibrosis is dependent on gut derived bacterial products, yet the exact contribution of the commensal microflora to liver fibrosis is unknown. Since the interaction of pathogen associated molecular patterns (PAMPs) with the innate immune system can also confer protection to the host, we subjected germfree mice to experimental models of liver fibrosis. Results from our laboratory demonstrate that germfree mice show exacerbated liver fibrosis as compared with conventional mice. Livers of germfree mice have a decreased expression of the antioxidant heat shock protein (Hsp)-25, more oxidative stress and a higher rate of apoptosis. The focus of this application is to further characterize the relationship between the intestinal microflora and the progression of chronic liver disease. We hypothesize that the commensal microflora is an important suppressor of oxidative stress and hence fibrosis upon chronic liver injury in mice. Our experimental approach is to apply mouse models of toxin-induced and cholestatic liver fibrosis to germfree and conventional mice and to investigate the contribution of the bacterial microflora to chronic liver disease (Aim 1). We will then assess the mechanism by which the microflora ameliorates experimental liver fibrosis. The focus will be on Hsp25 that is lower expressed in hepatocytes of germfree mice as compared with conventional mice and that has antioxidant properties. We will test the new concept that bacterial products or metabolites induce Hsp25 in hepatocytes. We will also focus on hepatic stellate cells to explain the phenotype with increased fibrosis under germ-free conditions (Aim 2). We will then supplement germfree mice with one bacterial metabolite or colonize germ-free mice with indole-3-propionic acid (IPA) synthesizing bacteria, and subject them to experimental liver fibrosis. A preventive and therapeutic approach will be chosen. Bacterial products or metabolites might confer antioxidant properties directly or via the induction of antioxidant molecules to the liver (Aim 3). We believe these studies will provide important insights into the contribution of the commensal microflora to liver fibrosis. This will establish a novel shift in the current paradigm that all translocated bacteria and their products are bad for liver injury and chronic liver disease. Eventually this approach might lead to new therapeutic targets and therapies for patients with chronic liver disease.

Public Health Relevance

Chronic liver disease affects several million people in the United States and is the most important cause of liver cirrhosis among Veterans. Results from this innovative study will benefit public health by increasing our understanding of the role that the enteric microbiome plays in the progression of chronic liver disease and by identifying protective bacterial products or metabolites for maintaining liver homeostasis. This novel knowledge will greatly enhance our ability to design preventive and therapeutic interventions for patients with chronic liver disease.

Agency
National Institute of Health (NIH)
Institute
Veterans Affairs (VA)
Type
Non-HHS Research Projects (I01)
Project #
1I01BX002213-01A2
Application #
8814609
Study Section
Gastroenterology (GAST)
Project Start
2014-10-01
Project End
2018-09-30
Budget Start
2014-10-01
Budget End
2015-09-30
Support Year
1
Fiscal Year
2015
Total Cost
Indirect Cost
Name
VA San Diego Healthcare System
Department
Type
DUNS #
073358855
City
San Diego
State
CA
Country
United States
Zip Code
92161
Inamine, Tatsuo; Schnabl, Bernd (2018) Immunoglobulin A and liver diseases. J Gastroenterol 53:691-700
Hartmann, Phillipp; Hochrath, Katrin; Horvath, Angela et al. (2018) Modulation of the intestinal bile acid/farnesoid X receptor/fibroblast growth factor 15 axis improves alcoholic liver disease in mice. Hepatology 67:2150-2166
Boule, Lisbeth A; Ju, Cynthia; Agudelo, Marisela et al. (2018) Summary of the 2016 Alcohol and Immunology Research Interest Group (AIRIG) meeting. Alcohol 66:35-43
Brandl, Katharina; Hartmann, Phillipp; Jih, Lily J et al. (2018) Dysregulation of serum bile acids and FGF19 in alcoholic hepatitis. J Hepatol 69:396-405
Chu, Huikuan; Williams, Brandon; Schnabl, Bernd (2018) Gut microbiota, fatty liver disease, and hepatocellular carcinoma. Liver Res 2:43-51
Llorente, Cristina; Jepsen, Peter; Inamine, Tatsuo et al. (2017) Gastric acid suppression promotes alcoholic liver disease by inducing overgrowth of intestinal Enterococcus. Nat Commun 8:837
Loomba, Rohit; Seguritan, Victor; Li, Weizhong et al. (2017) Gut Microbiome-Based Metagenomic Signature for Non-invasive Detection of Advanced Fibrosis in Human Nonalcoholic Fatty Liver Disease. Cell Metab 25:1054-1062.e5
Brandl, Katharina; Schnabl, Bernd (2017) Intestinal microbiota and nonalcoholic steatohepatitis. Curr Opin Gastroenterol 33:128-133
Yang, An-Ming; Inamine, Tatsuo; Hochrath, Katrin et al. (2017) Intestinal fungi contribute to development of alcoholic liver disease. J Clin Invest 127:2829-2841
Inamine, Tatsuo; Yang, An-Ming; Wang, Lirui et al. (2016) Genetic Loss of Immunoglobulin A Does Not Influence Development of Alcoholic Steatohepatitis in Mice. Alcohol Clin Exp Res 40:2604-2613

Showing the most recent 10 out of 26 publications