Insulin resistance and the resultant glucose intolerance are central to the pathophysiology of acquired diabetes, common health issues among veterans. Insulin resistance is also a powerful independent risk factor and a common co-morbidity in cardiovascular diseases. The prevalence of insulin resistance in multiple tissues associated diabetes and other diseases suggest a potential common mechanism of impaired glucose transport. We believe that we have identified a critical missing link between impaired insulin regulation and diabetes. Our data suggest that poorly balanced input from the brain via the sympathetic branch of the autonomic nervous system may underlie disruption of both glucose metabolism and cardiovascular function. I will explore a novel mechanism by which insulin regulates glucose uptake in a beta2 adrenergic receptor (beta2AR)-dependent manner and elucidate the contribution of this mechanism to the development of insulin resistance, the fundamental cause of Type II diabetes. I hypothesize that activation of a newly characterized insulin receptor/ beta2AR complex by insulin traffics a specific subcellular pool of activated Akt via transactivation of a beta2AR/Gi/PI3K cascade, which is essential for translocation of GLUT4 to the cell surface for glucose uptake. Our evidence suggests that this novel IR/beta2AR complex may hold the key to understanding insulin resistance in diverse tissues associated with diabetes. My ultimate goal is to advance the understanding of the pathophysiology of insulin resistance by identifying previously unidentified mechanisms involved in insulin-induced mobilization of GLUT4. These studies have the potential to lead to entirely new therapeutic targets to increase insulin sensitivity, of which relatively few agents currently exist.

Public Health Relevance

We believe that we have identified a critical missing link between impaired insulin regulation and diabetes. Our study will likely yield novel information on development of insulin resistance and diabetes, and completely new strategy in management of diabetes and co-morbidity in veterans

Agency
National Institute of Health (NIH)
Institute
Veterans Affairs (VA)
Type
Non-HHS Research Projects (I01)
Project #
5I01BX002900-04
Application #
9685676
Study Section
Endocriniology A (ENDA)
Project Start
2016-04-01
Project End
2020-09-30
Budget Start
2019-04-01
Budget End
2020-09-30
Support Year
4
Fiscal Year
2019
Total Cost
Indirect Cost
Name
VA Northern California Health Care System
Department
Type
DUNS #
127349889
City
Mather
State
CA
Country
United States
Zip Code
95655
Patriarchi, Tommaso; Shen, Ao; He, Wei et al. (2018) Nanodelivery of a functional membrane receptor to manipulate cellular phenotype. Sci Rep 8:3556
Reddy, Gopireddy Raghavender; West, Toni M; Jian, Zhong et al. (2018) Illuminating cell signaling with genetically encoded FRET biosensors in adult mouse cardiomyocytes. J Gen Physiol 150:1567-1582
Wang, Qingtong; Liu, Yongming; Fu, Qin et al. (2017) Inhibiting Insulin-Mediated ?2-Adrenergic Receptor Activation Prevents Diabetes-Associated Cardiac Dysfunction. Circulation 135:73-88
Barbagallo, Federica; Xu, Bing; Reddy, Gopireddy R et al. (2016) Genetically Encoded Biosensors Reveal PKA Hyperphosphorylation on the Myofilaments in Rabbit Heart Failure. Circ Res 119:931-43