Due to the varied and numerous events that occur in the spinal cord following injury, it is likely that the most effective approaches to promote recovery following injury will use multiple strategies. Thus, as promising strategies are identified, it is critical to determine what other approaches they can effectively combine with and whether the combinations are complementary, additive, or synergistic. The goal of the proposed research is to determine if a new training strategy targeting adaptive features of walking is beneficial alone or in combination with intraspinal delivery of chondroitinase ABC (Ch'ABC) following spinal cord injury (SCI). Although the potential to recover voluntary locomotor function is much greater with motor incomplete SCI in humans and cats, voluntary adaptive features of locomotion remain impaired. As such, these studies will address and target recovery of clinically important skills for effective home and community ambulation following SCI that are not currently addressed in rehabilitation. Ch'ABC and skill training are two diverse, but likely complementary, approaches. Ch'ABC is used to promote a more permissive substrate for axonal growth within the injured nervous system. Specifically, it cleaves the inhibitory chondroitin sulfate glycoaminoglycan (CS GAG) side chains of a large family of molecules that are known to increase at the site of spinal cord injury. In contrast, evolving basic locomotor training approaches target spared spinal circuitry through activity dependent mechanisms to promote functional recovery. Our guiding hypothesis is that skill-training, designed to target balance and limb trajectories, will enhance spontaneous and Ch'ABC-mediated recovery of adaptations necessary for complex locomotor tasks following SCI. Skill training will target adaptive features of locomotion including step length and height, limb accuracy, and balance that permit negotiation of more complex environments. These studies have evolved from our recently published work in the cat model using Ch'ABC as well as our human locomotor studies. The proposed studies are divided into two sets of experiments. The first set will compare the locomotor recovery (Aim 1a) and assess differences in anatomical substrates likely to contribute to structural plasticity (Aim 1b) between cats that receive no training, basic locomotor training (horizontal runway) and skill- training (multiple runways requiring adaptations in the stepcycle). The second set of experiments will compare the locomotor recovery of three groups of cats: Ch'ABC-only, Ch'ABC + basic locomotor training and Ch'ABC + skill-training (Aim 2a). These studies also will assess structural plasticity (Aim 2b). For assessment of structural plasticity, both retrograde and anterograde tracing approaches will be used. Retrograde tracing will focus on labeling of propriospinal as well as cortico-, rubro- and vesitibulospinal neurons after FluoroGold tracer delivery below the lesion. These systems are of particular interest because they may provide novel intraspinal circuitry at the lesion site or may be associated with various skilled locomotor features in normal cats respectively. Anterograde tracing will focus on trajectories and terminations of short propriospinal connections. Comparisons will be made across groups in all aims. Collectively, these studies will provide important information for evidence-based rehabilitation of motor skills (Aim1a), how two therapeutic approaches (training and intraspinal Ch'ABC) complement each other (Aim 2a) and how these approaches individually and combined may impact segmental and supra-segmental structural changes (Aims 1b and 2b).

Public Health Relevance

The mission of the Spinal Cord Injury &Disorders System of Care is to support, promote, and maintain the health, independence, quality of life, and productivity of veterans with SCI throughout their lives. The current research proposal addresses these needs through basic animal studies which assess the effects of two therapeutic treatments on re-growth of connections within the injured spinal cord and recovery of walking. The two therapeutic treatment approaches that will be assessed alone and in combination are: 1) motor training targeting features of locomotion required for stepping adaptations necessary for community walking;2) intraspinal delivery of an enzyme that breaks down factors inhibiting growth in the injured spinal cord. These potential treatments also may be relevant for other neurologic disorders which result in loss of connections and walking difficulty.

Agency
National Institute of Health (NIH)
Institute
Veterans Affairs (VA)
Type
Non-HHS Research Projects (I01)
Project #
1I01RX000243-01A1
Application #
8005631
Study Section
Spinal Cord Injury & Regenerative Medicine (RRD0)
Project Start
2010-10-01
Project End
2014-09-30
Budget Start
2010-10-01
Budget End
2014-09-30
Support Year
1
Fiscal Year
2012
Total Cost
Indirect Cost
Name
Veterans Health Administration
Department
Type
DUNS #
097378632
City
Gainesville
State
FL
Country
United States
Zip Code
32608
Mondello, S E; Jefferson, S C; O'Steen, W A et al. (2016) Enhancing Fluorogold-based neural tract tracing. J Neurosci Methods 270:85-91
Pitts, Teresa; Morris, Kendall F; Segers, Lauren S et al. (2016) Feed-forward and reciprocal inhibition for gain and phase timing control in a computational model of repetitive cough. J Appl Physiol (1985) 121:268-78
Mondello, S E; Jefferson, S C; Tester, N J et al. (2015) Impact of treatment duration and lesion size on effectiveness of chondroitinase treatment post-SCI. Exp Neurol 267:64-77
Reier, Paul J; Lane, Michael A; Hall, Edward D et al. (2012) Translational spinal cord injury research: preclinical guidelines and challenges. Handb Clin Neurol 109:411-33
Doperalski, Adele E; Tester, Nicole J; Jefferson, Stephanie C et al. (2011) Altered obstacle negotiation after low thoracic hemisection in the cat. J Neurotrauma 28:1983-93
Jefferson, Stephanie C; Tester, Nicole J; Howland, Dena R (2011) Chondroitinase ABC promotes recovery of adaptive limb movements and enhances axonal growth caudal to a spinal hemisection. J Neurosci 31:5710-20