In the prodromal phase of Alzheimer's disease (AD), beta-amyloid (AB) and tau preferentially spread throughout the default mode network (DMN) leading to neuronal loss and synaptic dysfunction. Episodic memory impairments in AD are thought to arise from the loss of structural and functional connectivity between nodes of the DMN. Emerging evidence from studies with repetitive transcranial magnetic stimulation (rTMS) in young adults demonstrate that the DMN can be modulated in a manner that promotes lasting episodic memory improvement. However, several fundamental questions remain regarding the factors that govern whether rTMS is effective in patients with Alzheimer's pathology and neurodegeneration. The primary goal of this proposal is to refine our understanding of the mechanisms and therapeutic potential of rTMS for enhancing DMN integrity and episodic memory in individuals with Alzheimer's pathology. 30 patients with prodromal AD, 30 AB+ cognitively normal older adults, and 30 AB- cognitively normal older adults will each undergo 5 days of sham-controlled rTMS preceded and followed by multimodal MRI sessions and cognitive testing. rTMS targets will be established using baseline functional connectivity derived from resting state functional MRI (rsfMRI) to determine the region in lateral parietal cortex with maximal functional connectivity to the hippocampus. rsfMRI outcome measures will include functional connectivity between the stimulation site and hippocampus, and intrinsic activity within the stimulation site and hippocampus. AB, tau, and FDG positron emission tomography (PET) scans and structural MRI will be used to quantify the impact of Alzheimer's pathology, hypometabolism, and atrophy on the efficacy of rTMS treatments in each group. All outcome measures will be related to behavioral measures of episodic memory immediately and 2 weeks after the end of treatment.
Aim 1 of the proposed project will establish the effects of rTMS on episodic memory in each group.
Aim 2 will establish functional network effects of rTMS in each group.
Aim 3 will use multivariate regression and machine learning algorithms to identify the biological features that are most useful in predicting whether an individual will benefit from rTMS. All data collection and analyses will take place at Massachusetts General Hospital and Harvard Medical School. During the completion of the project the candidate will receive training in the theory and application of TMS to modulate network function, the use of PET imaging to measure pathology in AD, clinical trial design, and the use of advanced biostatistics for biomarker development and treatment response prediction. The outcome of this research will provide insight into the individuals that are most likely to benefit from rTMS, and will inform future studies seeking to optimize rTMS treatments to improve cognition in dementia. Furthermore, the completion of this project will lay the foundation for the candidate's long-term goal of translating basic neuroimaging findings from healthy aging to direct benefits for patients with Alzheimer's disease.

Public Health Relevance

The proposed research examines the potential benefits of non-invasive repetitive transcranial brain stimulation (rTMS) to behavior and memory neurocircuitry in older adults and patients with prodromal Alzheimer?s disease. The outcome of this research will provide critical insight into the individuals that are most likely to benefit from rTMS, and to inform future studies seeking to optimize rTMS treatments to improve cognition in dementia. This project is consistent with the NIA?s strategic goal of developing interventions to address Alzheimer?s disease and other age-related neurological conditions

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Research Scientist Development Award - Research & Training (K01)
Project #
5K01AG059894-02
Application #
9980744
Study Section
Neuroscience of Aging Review Committee (NIA)
Program Officer
Mclinden, Kristina
Project Start
2019-08-01
Project End
2024-04-30
Budget Start
2020-05-01
Budget End
2021-04-30
Support Year
2
Fiscal Year
2020
Total Cost
Indirect Cost
Name
Massachusetts General Hospital
Department
Type
DUNS #
073130411
City
Boston
State
MA
Country
United States
Zip Code
02114