The long-term objective of this Career Development Award to Promote Diversity in Neuroscience Research is to develop the candidate's skills in applying novel brain network approaches to the study of neurodevelopmental disorders, and in conducting clinical assessments, so that she can become an independent investigator in the fields of neuroimaging and autism research. Specifically, the candidate will develop expertise in using diffusion tensor imaging (DTI) data in conjunction with recently developed multivariate pattern classification and effective connectivity analyses of functional magnetic resonance imaging (fMRI) data to examine structural and intrinsic functional brain connectivity underlying atypical behavior and cognition in children with autism spectrum disorders (ASD). To this end, the candidate will be mentored and trained by experts in the fields of neuroimaging, engineering, clinical psychology, neurology and psychiatry. The candidate will also gain critical experience in clinical assessments necessary for successfully working with children with ASD. In addition, the candidate will undertake formal coursework and attend seminars in functional neuroimaging, clinical psychology, and computer programming to achieve this goal. The research project proposed by the candidate will enable the acquisition of the skills required to become a successful independent investigator in the field of developmental cognitive neuroscience. ASD is a complex neurodevelopmental disorder of largely unknown etiology, characterized by social communicative impairments, restricted interests, and repetitive and stereotyped behaviors. The main goal of the proposed research is to examine aberrant structural and functional brain connectivity underlying atypical cognition and behavior in children with ASD. The candidate proposes to probe large-scale brain networks using DTI and fMRI to examine possible aberrant cortical connectivity and compromises in dynamic interactions between networks in children with ASD. She will specifically test a novel systems-level hypothesis she has put forth, synthesizing recent advances in brain network connectivity with converging evidence from neuroimaging studies in autism. The hypothesis is that hypoactivity of the anterior insula during processing of social stimuli results in reduced salience detection in individuals with ASD, which impairs dynamic switching between other large-scale brain networks important for cognition. Additionally, she will explore methods to establish brain-based biomarkers to distinguish children with ASD from typically developing children using a combination of brain connectivity measures and cognitive and behavioral measures. Completion of this research project and training plan will enable Dr. Uddin to gain proficiency relevant to her goal of becoming an independent investigator in the fields of autism and neuroimaging research, and will also facilitate the principled development of biomarkers of brain network dysfunction in ASD. This Career Development Award is consistent with the NIH goals to promote diversity in neuroscience research. )

Public Health Relevance

Autism spectrum disorders (ASD) affect 1:150 individuals, and the incidence continues to rise steadily, making the disorder an urgent public health concern. ASD results in lifelong difficulties for afflicted individuals and their families, and there is no known cure. Recently developed analytic tools have enabled the study of brain connectivity in vivo, revealing important principles of brain organization in individuals with ASD. Characterization of the integrity and functional roles of brain networks, as well as interactions between them, will help us to understand the underlying brain differences in individuals with ASD and eventually lead to the development of more effective treatments and therapies. )

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Research Scientist Development Award - Research & Training (K01)
Project #
1K01MH092288-01
Application #
7872400
Study Section
NST-2 Subcommittee (NST)
Program Officer
Churchill, James D
Project Start
2010-04-01
Project End
2015-08-31
Budget Start
2010-04-01
Budget End
2011-08-31
Support Year
1
Fiscal Year
2010
Total Cost
$165,629
Indirect Cost
Name
Stanford University
Department
Psychiatry
Type
Schools of Medicine
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94305
Dickie, Erin W; Ameis, Stephanie H; Shahab, Saba et al. (2018) Personalized Intrinsic Network Topography Mapping and Functional Connectivity Deficits in Autism Spectrum Disorder. Biol Psychiatry 84:278-286
Uddin, L Q; Dajani, D R; Voorhies, W et al. (2017) Progress and roadblocks in the search for brain-based biomarkers of autism and attention-deficit/hyperactivity disorder. Transl Psychiatry 7:e1218
Nomi, Jason S; Vij, Shruti Gopal; Dajani, Dina R et al. (2017) Chronnectomic patterns and neural flexibility underlie executive function. Neuroimage 147:861-871
Chen, Heng; Nomi, Jason S; Uddin, Lucina Q et al. (2017) Intrinsic functional connectivity variance and state-specific under-connectivity in autism. Hum Brain Mapp 38:5740-5755
Burrows, Catherine A; Timpano, Kiara R; Uddin, Lucina Q (2017) Putative Brain Networks Underlying Repetitive Negative Thinking and Comorbid Internalizing Problems in Autism. Clin Psychol Sci 5:522-536
Chen, Heng; Uddin, Lucina Q; Duan, Xujun et al. (2017) Shared atypical default mode and salience network functional connectivity between autism and schizophrenia. Autism Res 10:1776-1786
Ivanova, Anna; Zaidel, Eran; Salamon, Noriko et al. (2017) Intrinsic functional organization of putative language networks in the brain following left cerebral hemispherectomy. Brain Struct Funct 222:3795-3805
Chen, Heng; Uddin, Lucina Q; Zhang, Youxue et al. (2016) Atypical effective connectivity of thalamo-cortical circuits in autism spectrum disorder. Autism Res 9:1183-1190
Dajani, Dina R; Llabre, Maria M; Nebel, Mary Beth et al. (2016) Heterogeneity of executive functions among comorbid neurodevelopmental disorders. Sci Rep 6:36566
Dajani, Dina R; Uddin, Lucina Q (2016) Local brain connectivity across development in autism spectrum disorder: A cross-sectional investigation. Autism Res 9:43-54

Showing the most recent 10 out of 47 publications