This is an application for a K01 award for Dr. Linda Valeri, a biostatistician at McLean Hospital and the Harvard Medical School. Dr. Valeri is establishing herself as a young investigator in psychiatric biostatistics focusing on psychotic disorders. This K01 award will provide Dr. Valeri with the support necessary to accomplish the following goals: (1) to become expert in psychiatric biostatistics focusing on mobile health (mhealth) research for psychotic disorders (2) to conduct investigations using mhealth technologies in patients with psychosis; (3) to develop automated software for advanced machine learning methods in mhealth studies; and (4) to develop an independent research career. To achieve these goals, Dr. Valeri has assembled a team comprised of three mentors, Dr. Dost ngr, Chief of the McLean Hospital Psychotic Disorders Division, who leads a neuroimaging laboratory studying the biology of psychotic illness, and co-mentors Dr. Russell Schutt, Professor of Sociology at University of Massachusetts in Boston, who has extensive experience in the study of social interactions in patients with severe mental illness, and Dr. Jukka-Pekka Onnela, Associate Professor of Biostatistics at Harvard T.H. Chan School of Public Health, who has developed a platform for collection of raw sensor data from mobile devices, called ?Beiwe?, and conducts research in the fields of digital phenotyping and network science. Dr. Valeri?s research will focus on the development of statistical methods for the analysis of mhealth data to shed light on the role of social engagement in psychosis. The proposal builds upon the hypothesis that social interactions captured by passive mobile data streams (call and text logs) and mobile surveys are potential targets of intervention and could lead to a sustained recovery by promoting perceived social support and improving psychiatric symptoms.
In Aim 1 (a) we propose to extend a machine learning approach, Bayesian Kernel Machine Regression, for the analysis of mobile data streams accounting for time- varying confounding. The approach will allow in Aim 1(b) to establish (i) reliable links between a high dimensional time series of passive measures of social and mobility behaviors with self-reported measures of social interaction and (ii) the effect of social interaction dynamics on perceived social support and psychiatric symptoms measured in clinical settings. Further, we will extend the approach to correct for selection bias introduced by missing data in mobile surveys (Aim 2). For both aims, Dr. Valeri will develop software (Aim 3) and apply the approaches to investigate these scientific questions using data from an ongoing study based at McLean Hospital Psychotic Disorders Division that employs the smartphone platform for collection of sensor data developed by Dr. Onnela. Dr. Valeri?s investigation will provide preliminary evidence on features and timing of social interaction behaviors that can improve psychiatric symptoms along with understanding of potential mechanisms of action. This research will form the basis for an intervention study that encourages social interactions of patients with psychosis, to be proposed in a future R01 application. !

Public Health Relevance

Complex psychiatric diseases, such as chronic psychotic disorder, are major public health issues in the United States. The proposed research provides an innovative framework and develops powerful and computationally efficient statistical methods to integrate active (e.g. survey) and passive (e.g. GPS, text and call log) data streams from mobile sensors for the discovery of behavioral targets of treatment for chronic psychosis. By combining her expertise in biostatistics and causal inference with newly obtained knowledge of psychopathology of psychosis and of advanced machine learning methods, Dr. Valeri will acquire the necessary skill set and maturity to launch an independent research group. !

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Research Scientist Development Award - Research & Training (K01)
Project #
5K01MH118477-02
Application #
9786244
Study Section
Mental Health Services Research Committee (SERV)
Program Officer
Chavez, Mark
Project Start
2018-09-19
Project End
2022-08-31
Budget Start
2019-09-01
Budget End
2020-08-31
Support Year
2
Fiscal Year
2019
Total Cost
Indirect Cost
Name
Columbia University (N.Y.)
Department
Biostatistics & Other Math Sci
Type
Schools of Public Health
DUNS #
621889815
City
New York
State
NY
Country
United States
Zip Code
10032