Gastrointestinal stromal tumor (GIST) is the most common type of human sarcomas, arising from the interstitial cells of Cajal (ICCs). The majority of GISTs harbor activating KIT mutations, which is thought to be the main oncogenic drive in GIST pathogenesis. Imatinib is an effective therapy in advanced GISTs. However, resistance invariably develops, and it is imperative to better understand the pathogenesis of GIST and to identify novel therapeutic targets in GIST management. Our preliminary studies show that ETV1, an ETS family transcription factor implicated in the pathogenesis of other malignancies including prostate cancer, is a master regulator of a transcriptional program that characterizes cells belonging to the ICC-GIST lineage and is required for their maintenance and survival. We further show that ETV1 regulates the GIST-signature genes primarily via binding to their cis-regulatory regions/enhancers at the genomic level. Additionally, our studies show that KIT with activating mutations strongly cooperates with ETV1 in tumorigenesis at least in part by stabilizing ETV1 protein levels. Our findings suggest that ETV1 may define the optimal cellular context for KIT- driven oncogenesis in GIST, and provide a rationale for why patients and mice with germ-line activating-KIT mutations exclusively develop neoplasia in the ICC-lineage, but not of other cell lineages that are known to be developmentally regulated by KIT, including melanocytes, germ cells, and hematopoietic cells. These observations led to the following specific aims to further characterize the genomic and epigenomic aspects of ETV1 transcriptional regulation that underlies the cellular context in GIST, to dissect the functional interplay of KIT signaling with ETV1 transcriptional program, and to more rigorously investigate the role of ETV1 in GIST initiation and maintenance, with the goal to better understand GIST pathogenesis and to identify novel strategies for next-generation of targeted therapy in GIST management. I propose to perform genome-wide mapping of ETV1 cistrome and histone modifications characteristic of enhancers and promoters, and integrate with ETV1 transcriptome studies to gain a comprehensive understanding of the genomic and epigenomic regulation of the ETV1 transcriptional program that underlie the cellular context in GIST oncogenesis. Second, I propose to define the downstream KIT pathway involved in regulation of ETV1 protein stability;I also propose to directly assess whether ETV1 transcriptional program is the critical pathway that mediates GIST oncogenesis downstream of activated KIT signaling, using degradation-resistant ETV1 mutants in imatinib rescuing experiments. Third, I propose to use pre-existing GIST and Etv1-knockout mouse models to examine the requirement of ETV1 for initiation and/or maintenance of GIST in vivo. These studies will provide a comprehensive understanding of the pathogenesis of GIST mediated by the ETV1 transcriptional program and can have broad implications on other ETS transcription factor dependent malignancies. As importantly, it will provide a novel therapeutic strategy in imatinib-resistant GIST and likely other ETV1-dependent malignancies. This project will be performed under the joint mentorship of Dr. C. David Allis at the Rockefeller University, a world renowned expert in epigenetics and regulation of transcription, and Dr. Charles L. Sawyers at MSKCC who initially developed imatinib for chronic myelogenous leukemia treatment with tremendous expertise in cell signaling mouse modeling and translational research. During the training period, I will gain proficiency in many areas using diverse techniques to tackle the role of ETV1 in GIST pathogenesis. At the end of the period, my goal is become an independent physician-scientist combining bench based research and clinical care of sarcoma patients.

Public Health Relevance

Despite the effectiveness of tyrosine kinase inhibitors (TKIs), resistance to TKIs has become an increasing clinical problem in the treatment of gastrointestinal stromal tumors (GISTs), and novel therapeutic strategies are imperative. ETV1 is recently discovered by us as a lineage-specific transcription factor that regulates the GIST phenotype and is required for the growth and survival of GIST. Here, I propose to investigate the roles ETV1 in the pathogenesis of GIST using mouse models and genome-wide analyses of the ETV1-mediated transcriptional regulation, and to identify novel therapeutic strategies for TKI-resistant GIST.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Clinical Investigator Award (CIA) (K08)
Project #
5K08CA151660-04
Application #
8683122
Study Section
Subcommittee B - Comprehensiveness (NCI)
Program Officer
Perkins, Susan N
Project Start
2011-07-01
Project End
2016-06-30
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
4
Fiscal Year
2014
Total Cost
Indirect Cost
City
New York
State
NY
Country
United States
Zip Code
10065
Xie, Yuanyuan; Cao, Zhen; Wong, Elissa Wp et al. (2018) COP1/DET1/ETS axis regulates ERK transcriptome and sensitivity to MAPK inhibitors. J Clin Invest 128:1442-1457
Moore, Amanda R; Ran, Leili; Guan, Youxin et al. (2018) GNA11 Q209L Mouse Model Reveals RasGRP3 as an Essential Signaling Node in Uveal Melanoma. Cell Rep 22:2455-2468
Ran, Leili; Chen, Yuedan; Sher, Jessica et al. (2018) FOXF1 Defines the Core-Regulatory Circuitry in Gastrointestinal Stromal Tumor. Cancer Discov 8:234-251
Shukla, Shipra; Cyrta, Joanna; Murphy, Devan A et al. (2017) Aberrant Activation of a Gastrointestinal Transcriptional Circuit in Prostate Cancer Mediates Castration Resistance. Cancer Cell 32:792-806.e7
Ran, Leili; Murphy, Devan; Sher, Jessica et al. (2017) ETV1-Positive Cells Give Rise to BRAFV600E -Mutant Gastrointestinal Stromal Tumors. Cancer Res 77:3758-3765
Moore, Amanda R; Ceraudo, Emilie; Sher, Jessica J et al. (2016) Recurrent activating mutations of G-protein-coupled receptor CYSLTR2 in uveal melanoma. Nat Genet 48:675-80
Prieto-Granada, Carlos N; Wiesner, Thomas; Messina, Jane L et al. (2016) Loss of H3K27me3 Expression Is a Highly Sensitive Marker for Sporadic and Radiation-induced MPNST. Am J Surg Pathol 40:479-89
Lu, Chao; Jain, Siddhant U; Hoelper, Dominik et al. (2016) Histone H3K36 mutations promote sarcomagenesis through altered histone methylation landscape. Science 352:844-9
Wiesner, Thomas; Lee, William; Obenauf, Anna C et al. (2015) Alternative transcription initiation leads to expression of a novel ALK isoform in cancer. Nature 526:453-7
Ran, Leili; Sirota, Inna; Cao, Zhen et al. (2015) Combined inhibition of MAP kinase and KIT signaling synergistically destabilizes ETV1 and suppresses GIST tumor growth. Cancer Discov 5:304-15

Showing the most recent 10 out of 13 publications