The activation of gonadotropin-releasing hormone (GnRH) neurons at puberty is not well understood but recent evidence suggests a role for the kisspeptin-KISS1R system as a key regulator of reproductive development and function. While it is clear that kisspeptin and KISS1R function as essential regulators of the neuroendocrine cascade, many questions remain about the role of this novel ligand-receptor system in the regulation of GnRH neuronal function at the time of puberty as well as during subsequent reproductive function. The overarching hypothesis underlying this project is that intracellular signal transduction by kisspeptin is influenced by desensitization, internalization, and recycling/degradation of the KISS1R, thereby playing critical roles in controlling the timing of puberty and maintaining cyclical reproductive function. An additional hypothesis for this project is that a better understanding of the mechanisms by which mutations affect the kisspeptin-KISS1R system will have clinical implications by providing insights into the pathophysiology of the associated phenotypes, laying the groundwork for the development of new diagnostic tools as well as for genetic counseling of patients and their family members, and identifying novel therapeutic targets. We propose the following specific aims: (1) To characterize KISS1R-mediated intracellular signaling, trafficking, turnover, desensitization, and resensitization; (2) To identify extracellular co-factors that modulate KISS1R signaling and to study their mechanisms of action in the regulation of kisspeptin-mediated KISS1R activation; and (3) To generate and characterize a KISS1R (R386P) knock-in mouse as a model to better understand the mechanisms by which this mutation is associated with central precocious puberty (CPP). The successful completion of the proposed studies will advance our understanding of the kisspeptin/KISS1R system in the regulation of GnRH neuronal function at the time of puberty as well as during subsequent reproductive function and discover potential therapeutic targets for patients with reproductive disorders. Furthermore, completion of these studies will provide training in the generation of genetically manipulated mouse models and will enrich the Candidate's research experience in experimental design, aiding in the development of a successful independent translational investigator.

Public Health Relevance

The mechanisms underlying the activation of the reproductive cascade at puberty are not well understood. Recent evidence suggests a role for the kisspeptin-KISS1R system as a key regulator of reproductive development and function. The successful completion of the proposed research will advance our understanding of this novel ligand-receptor system in the regulation of puberty onset, one of the greatest mysteries of human biology, and identify therapeutic targets for infertility, which affects one in seven couples.

Agency
National Institute of Health (NIH)
Institute
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Type
Clinical Investigator Award (CIA) (K08)
Project #
5K08HD070957-04
Application #
8857521
Study Section
Biobehavioral and Behavioral Sciences Subcommittee (CHHD)
Program Officer
Winer, Karen
Project Start
2012-07-01
Project End
2016-05-31
Budget Start
2015-06-01
Budget End
2016-05-31
Support Year
4
Fiscal Year
2015
Total Cost
Indirect Cost
Name
Brigham and Women's Hospital
Department
Type
DUNS #
030811269
City
Boston
State
MA
Country
United States
Zip Code
Angell, Trevor E; Min, Le; Wieczorek, Tad J et al. (2018) Unique Cytologic Features of Thyroiditis Caused by Immune Checkpoint Inhibitor Therapy for Malignant Melanoma. Genes Dis 5:46-48
Zheng, Junjie; Mao, Jiangfeng; Xu, Hongli et al. (2017) Pulsatile GnRH Therapy May Restore Hypothalamus-Pituitary-Testis Axis Function in Patients With Congenital Combined Pituitary Hormone Deficiency: A Prospective, Self-Controlled Trial. J Clin Endocrinol Metab 102:2291-2300
Bi, Wenya Linda; Greenwald, Noah F; Ramkissoon, Shakti H et al. (2017) Clinical Identification of Oncogenic Drivers and Copy-Number Alterations in Pituitary Tumors. Endocrinology 158:2284-2291
Lee, Hyunju; Hodi, F Stephen; Giobbie-Hurder, Anita et al. (2017) Characterization of Thyroid Disorders in Patients Receiving Immune Checkpoint Inhibition Therapy. Cancer Immunol Res 5:1133-1140
Min, Le (2016) FUNCTIONAL HYPERCORTISOLISM, VISCERAL OBESITY, AND METABOLIC SYNDROME. Endocr Pract 22:506-8
Min, Le; Nie, Min; Zhang, Anna et al. (2016) Computational Analysis of Missense Variants of G Protein-Coupled Receptors Involved in the Neuroendocrine Regulation of Reproduction. Neuroendocrinology 103:230-9
Min, Le (2016) Immune-related endocrine disorders in novel Immune checkpoint inhibition therapy. Genes Dis 3:252-256
Min, Le; Hodi, F Stephen; Kaiser, Ursula B (2015) Corticosteroids and immune checkpoint blockade. Aging (Albany NY) 7:521-2
Min, Le; Leon, Silvia; Li, Huan et al. (2015) RF9 Acts as a KISS1R Agonist In Vivo and In Vitro. Endocrinology 156:4639-48
Mao, Jiang-Feng; Xu, Hong-Li; Duan, Jin et al. (2015) Reversal of idiopathic hypogonadotropic hypogonadism: a cohort study in Chinese patients. Asian J Androl 17:497-502

Showing the most recent 10 out of 20 publications