This proposal describes a 5 year training program for the development of an academic career in Cardiovascular Medicine. Dr. Malhotra (Principal Investigator) has had training in molecular biology and cardiovascular disease as an undergraduate, graduate, and medical student at Harvard University and an internal medicine resident and cardiovascular fellow at Massachusetts General Hospital (MGH) and has years of experience and productivity in basic research investigation. Dr. Malhotra will conduct the proposed research at MGH with the guidance of Dr. Kenneth Bloch, Professor of Medicine and Anesthesia at Harvard Medical School, who has a proven track record as a mentor and has fostered and supported the transition of numerous early investigators into independently-funded scientists. In addition to his mentor, Dr. Malhotra will benefit from the expertise of co-mentor Dr Yu (an expert in BMP signaling) and advisors Drs. Aikawa, Lee, Peterson, and Dec. Dr. Malhotra will have dedicated office and research space in proximity to Dr. Bloch's laboratory to design and perform experiments and will have ready access to the equipment and facilities needed to carry out his research program. Furthermore, the MGH Cardiovascular Research Center (CVRC) provides an ideal environment for training physician-scientists. As a member of the CVRC, Dr. Malhotra will gain from the expertise of over 100 faculty and post-doctoral fellows, will develop long-lasting and productive research collaborations, will learn and grow as a scientist and laboratory leader from a defined course curriculum at Harvard Medical School and the many seminars and didactic sessions available, and will have access to a wide range of biomedical core facilities at MGH and Harvard Medical School to aid in the successful completion of the research program outlined in his application. Dr. Malhotra's research program focuses on the mechanisms of vascular calcification, highly relevant to the pathogenesis of acute coronary syndromes, aortic syndromes, and peripheral arterial disease. Calcification of the vessel wall is an important risk factor for cardiovascular events and is thought to contribute to plaque destabilization. The expression of bone morphogenetic proteins (BMPs) in human atherosclerotic lesions is associated with the development of vessel wall calcification. The use of a murine model of vascular calcification induced by matrix Gla protein deficiency (MGP-/- mice) has highlighted an essential role for BMPs in the pathogenesis of vessel calcification. In preliminary studies, Dr. Malhotra has observed that pharmacologic inhibition of BMP signaling reduces the burden of vascular calcification in MGP-/- mice and improves survival. The candidate proposes to define the specific role of BMPs in vascular calcification with the following two aims:
In Aim 1, the candidate's first objective is to characterize the downstream signaling pathways known to be associated with osteogenic differentiation and vascular calcification (e.g., Runx2, Msx2, Wnt and Notch signaling) that are modulated by BMP signaling. Dr. Malhotra will extend his preliminary in vivo findings by modeling calcification using cultured MGP-/- aortic smooth muscle cells and aortic explants. Pharmacologic inhibition of BMP signaling offers a unique strategy to identify specific downstream signaling pathways essential for vascular calcification that are modulated by BMPs. Dr. Malhotra will also ascertain whether vascular calcification is reversible with BMP inhibition, which would have important implications in the mechanisms and treatment of vascular disease.
In Aim 2, the candidate will identify the specific BMP type I receptor(s) essential for BMP-mediated vascular calcification using conditional gene knockout techniques, both in cell culture and in mice, and small interfering RNA techniques in cell culture. Enhancing knowledge of the BMP-mediated mechanisms responsible for vascular calcification may hold important clinical implications and provide new insights and targets for the treatment of cardiovascular disease. Combining his training and experience in biomedical research with a successful mentor and a supportive institutional environment, Dr. Malhotra aims to accomplish the following immediate and long-term career goals: (1) To develop a broader understanding of the gene expression program resulting in vascular calcification. (2) To determine the molecular mechanisms by which BMPs promote cardiovascular calcification and, in doing so, to learn advanced techniques in molecular biology and conditional gene deletion in murine models. (3) To develop under the guidance of his mentor, co-mentor, and advisory committee the necessary skills of directing a laboratory, fostering productive research collaborations, grant writing, and of becoming an independent basic science investigator. (4) To successfully apply for R01 funding within 3-4 years of his award initiation. (5) To become an independently-funded investigator at the MGH CVRC, with the expertise needed to lead an innovative research area in cardiology, in which the findings of experiments in molecular biology are ultimately applied to studies of human disease.

Public Health Relevance

The discovery of new and effective treatments for cardiovascular diseases requires the identification of novel disease mechanisms. This proposal aims to enhance our mechanistic insights of vascular disease by focusing on a novel signaling pathway that contributes to the development of calcified arteries in humans. Success in identifying the specific molecules in this pathway implicated in the development of calcification will provide new targets for the prevention and treatment of heart attacks and peripheral arterial disease.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Clinical Investigator Award (CIA) (K08)
Project #
5K08HL111210-02
Application #
8794460
Study Section
Special Emphasis Panel (ZHL1-CSR-K (O2))
Program Officer
Wang, Wayne C
Project Start
2014-02-01
Project End
2019-01-31
Budget Start
2015-02-01
Budget End
2016-01-31
Support Year
2
Fiscal Year
2015
Total Cost
$137,160
Indirect Cost
$10,160
Name
Massachusetts General Hospital
Department
Type
DUNS #
073130411
City
Boston
State
MA
Country
United States
Zip Code
02199
Bailey, Cole S; Wooster, Luke T; Buswell, Mary et al. (2018) Post-Exercise Oxygen Uptake Recovery Delay: A Novel Index of Impaired Cardiac Reserve Capacity in Heart Failure. JACC Heart Fail 6:329-339
Malhotra, Rajeev; Wunderer, Florian; Barnes, Hanna J et al. (2018) Hepcidin Deficiency Protects Against Atherosclerosis. Arterioscler Thromb Vasc Biol :ATVBAHA118312215
Lino Cardenas, Christian L; Kessinger, Chase W; Cheng, Yisha et al. (2018) An HDAC9-MALAT1-BRG1 complex mediates smooth muscle dysfunction in thoracic aortic aneurysm. Nat Commun 9:1009
Eisman, Aaron S; Shah, Ravi V; Dhakal, Bishnu P et al. (2018) Pulmonary Capillary Wedge Pressure Patterns During Exercise Predict Exercise Capacity and Incident Heart Failure. Circ Heart Fail 11:e004750
Nigwekar, Sagar U; Bloch, Donald B; Nazarian, Rosalynn M et al. (2017) Vitamin K-Dependent Carboxylation of Matrix Gla Protein Influences the Risk of Calciphylaxis. J Am Soc Nephrol 28:1717-1722
Hoeft, Konrad; Bloch, Donald B; Graw, Jan A et al. (2017) Iron Loading Exaggerates the Inflammatory Response to the Toll-like Receptor 4 Ligand Lipopolysaccharide by Altering Mitochondrial Homeostasis. Anesthesiology 127:121-135
Nigwekar, Sagar U; Jiramongkolchai, Pawina; Wunderer, Florian et al. (2017) Increased Bone Morphogenetic Protein Signaling in the Cutaneous Vasculature of Patients with Calciphylaxis. Am J Nephrol 46:429-438
Lewis, Gregory D; Malhotra, Rajeev; Hernandez, Adrian F et al. (2017) Effect of Oral Iron Repletion on Exercise Capacity in Patients With Heart Failure With Reduced Ejection Fraction and Iron Deficiency: The IRONOUT HF Randomized Clinical Trial. JAMA 317:1958-1966
Yu, Binglan; Blaesi, Aron H; Casey, Noel et al. (2016) Detection and removal of impurities in nitric oxide generated from air by pulsed electrical discharge. Nitric Oxide 60:16-23
Li, Xiang; Rhee, David K; Malhotra, Rajeev et al. (2016) Progesterone receptor membrane component-1 regulates hepcidin biosynthesis. J Clin Invest 126:389-401

Showing the most recent 10 out of 23 publications