Alpha-synuclein has a central role in the pathogenesis of Parkinson's disease, yet how it triggers dopaminergic neuron toxicity is poorly understood. Recent gene microarray studies in transgenic alpha-synuclein mice have shown that over-expression of alpha-synuclein results in decreased expression of a class of genes encoding the 14-3-3 proteins. Because the 14-3-3s regulate key signaling cascades, including apoptosis, the decrease in 14-3-3s may be an important step in alpha-synuclein-induced toxicity. The candidate has obtained preliminary data supporting the neuroprotective potential of the 14-3-3 proteins, particularly the theta isofom. Proposed experiments will determine the extent to which 14-3-3 isoforms can mitigate alpha-synuclein toxicity in both in vitro and in vivo models of Parkinson's disease and whether they can reduce apoptotic factor activity in these models. Potential mechanisms of how alpha-synuclein causes decreased 14-3-3 expression will be examined. Studies to evaluate the role of phosphorylation in the interaction between 14-3-3s and alpha-synuclein will also be performed. Results from these studies will look to validate the 14-3-3 proteins as potential targets for therapy in Parkinson's disease and related disorders. The research portion of the proposed career development program will further the candidate's understanding of Parkinson's disease pathophysiology and her training in experimental skills, such as in vivo animal work, epigenetic methods and the use of viral vectors for gene delivery. She will continue her subspecialty training and clinical practice in the diagnosis and treatment of Parkinson's disease and related disorders. In addition, the candidate will pursue formal studies in clinical research training to acquire knowledge on the major issues for converting a molecule neuroprotective in animal models into treatment for human patients. By the end of the five-year plan, the candidate expects to be fully equipped to direct research on Parkinson's disease mechanisms and the translation of such research into potential therapies. The 14-3-3 proteins appear promising, but whether or not they turn out to become practical neuroprotective agents, the experience gained in studying these proteins will have taught the candidate how to test whether candidate proteins are truly protective and, if so, how to begin developing them into clinical therapy. ?

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Clinical Investigator Award (CIA) (K08)
Project #
1K08NS060948-01
Application #
7360780
Study Section
NST-2 Subcommittee (NST)
Program Officer
Sutherland, Margaret L
Project Start
2008-03-01
Project End
2013-01-31
Budget Start
2008-03-01
Budget End
2009-01-31
Support Year
1
Fiscal Year
2008
Total Cost
$166,979
Indirect Cost
Name
University of Alabama Birmingham
Department
Neurology
Type
Schools of Medicine
DUNS #
063690705
City
Birmingham
State
AL
Country
United States
Zip Code
35294
Ding, H; Underwood, R; Lavalley, N et al. (2015) 14-3-3 inhibition promotes dopaminergic neuron loss and 14-3-3? overexpression promotes recovery in the MPTP mouse model of Parkinson's disease. Neuroscience 307:73-82
Slone, Sunny Rae; Lavalley, Nicholas; McFerrin, Michael et al. (2015) Increased 14-3-3 phosphorylation observed in Parkinson's disease reduces neuroprotective potential of 14-3-3 proteins. Neurobiol Dis 79:1-13
Olanow, C Warren; Kieburtz, Karl; Odin, Per et al. (2014) Continuous intrajejunal infusion of levodopa-carbidopa intestinal gel for patients with advanced Parkinson's disease: a randomised, controlled, double-blind, double-dummy study. Lancet Neurol 13:141-9
Steidinger, Trent U; Slone, Sunny R; Ding, Huiping et al. (2013) Angiogenin in Parkinson disease models: role of Akt phosphorylation and evaluation of AAV-mediated angiogenin expression in MPTP treated mice. PLoS One 8:e56092
Yacoubian, Talene A (2013) IPX066: a new intermediate-and extended-release carbidopa-levodopa formulation. Neurodegener Dis Manag 3:123-131
Amara, Amy W; Standaert, David G (2013) Metabolomics and the search for biomarkers in Parkinson's disease. Mov Disord 28:1620-1
Ding, Huiping; Fineberg, Naomi S; Gray, Michelle et al. (2013) ?-Synuclein overexpression represses 14-3-3? transcription. J Mol Neurosci 51:1000-9
Fernandez, Hubert H; Vanagunas, Arvydas; Odin, Per et al. (2013) Levodopa-carbidopa intestinal gel in advanced Parkinson's disease open-label study: interim results. Parkinsonism Relat Disord 19:339-45
Slone, Sunny R; Lesort, Mathieu; Yacoubian, Talene A (2011) 14-3-3theta protects against neurotoxicity in a cellular Parkinson's disease model through inhibition of the apoptotic factor Bax. PLoS One 6:e21720
Steidinger, Trent U; Standaert, David G; Yacoubian, Talene A (2011) A neuroprotective role for angiogenin in models of Parkinson's disease. J Neurochem 116:334-41

Showing the most recent 10 out of 12 publications