Dr. Satiro De Oliveira, M.D. is an Assistant Professor of Pediatrics in the Division of Hematology/Oncology at UCLA with research interests in biology of transplantation and cancer immunotherapy. His long-term goals are to bring cellular therapy approaches to standard clinical practice. His mentor, Dr. Donald Kohn, M.D., is highly qualified and internationally recognized gene therapy exponent and mentor. A Scientific Advisory Committee has been assembled to combine excellent mentorship skills and expertise in cancer immunotherapy and non- Hodgkin lymphoma to provide guidance for the career development and research plan. Non-Hodgkin lymphomas (NHL) are the fifth most prevalent cancer in the US; patients with refractory or recurrent NHL have less than 50% of chance of cure. The main goal of this proposal is to use gene modification of hematopoietic stem cells (HSC) with chimeric antigen receptors (CAR) targeting CD19, a molecule present in the majority of the NHL. CAR are synthetic chimeric proteins composed of the antigen-recognition portion of a monoclonal antibody fused to intracellular signaling domains able to activate immune cells. CAR-modification of HSC brings the prospect of long-term persistence and CAR expression in multiple hematopoietic lineages, amplifying graft-versus-lymphoma activity; CAR+ HSC could be infused in the context of standard autologous hematopoietic stem cell transplantation. A robust in vivo model of humanized NSG mice engrafted with anti-CD19-CAR-modified HSC has been recently published by Dr. De Oliveira. Detailed evaluation of this approach will lead to a first-in-human clinical trial. A key feature of this K23 application is the use of paired samples of HSC and NHL tumors from patients, with correlation to their demographics, expression of membrane proteins on tumor cells, clinical data and therapeutic outcomes. The scientific questions addressed in this proposal are:
Aim 1. Will CAR-modified HSC lead to lasting immunological memory and persistent anti-cancer activity? 1.1. Comparative evaluation of CD28 and 4-1BB co-stimulatory molecules in the anti-CD19 CAR constructs used for modification of human HSC. 1.2. Evaluation of anti-CD19 activity in mice engrafted with CAR-modified human HSC at multiple time-points and after serial tumor challenges. 1.3. Evaluation of the generation of memory T cell subsets from CAR-modified human HSC in mice compared to adoptively transferred CAR-modified human T cells.
Aim 2. How robust is the protection of CAR-modified HSC against CD19+ NHL primary tumors? 2.1. Evaluation of humanization of NSG mice with gene-modified HSC from B cell NHL patients. 2.2. Characterization of the phenotype of primary NHL tumor cells using mass cytometry (CyTOF). 2.3. Evaluation of anti-lymphoma activity in humanized mice challenged with primary B cell NHL tumors.

Public Health Relevance

Non-Hodgkin lymphomas (NHL) are the fifth most prevalent cancer in the US, with over 55,000 new cases diagnosed each year in the US; patients with refractory or recurrent NHL have less than 50% of chance of cure. I propose a novel treatment approach by performing gene modification of blood stem cells, which will continuously generate a whole immune system redirected to attack cancer, and develop persistent protection against lymphoma. Detailed evaluation of this approach is required for progression to clinical trials; this research plan will obtain samples of primary NHL tumor tissues and hematopoietic stem cells from NHL patients for evaluation of this therapeutic approach in humanized mouse model with correlation to the patients' clinical outcome.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Mentored Patient-Oriented Research Career Development Award (K23)
Project #
5K23CA222659-04
Application #
10098304
Study Section
Subcommittee I - Transistion to Independence (NCI)
Program Officer
Tilahun, Mulualem Enyew
Project Start
2017-09-18
Project End
2023-02-28
Budget Start
2021-03-01
Budget End
2022-02-28
Support Year
4
Fiscal Year
2021
Total Cost
Indirect Cost
Name
University of California Los Angeles
Department
Pediatrics
Type
Schools of Medicine
DUNS #
092530369
City
Los Angeles
State
CA
Country
United States
Zip Code
90095
Kuo, Caroline Y; Long, Joseph D; Campo-Fernandez, Beatriz et al. (2018) Site-Specific Gene Editing of Human Hematopoietic Stem Cells for X-Linked Hyper-IgM Syndrome. Cell Rep 23:2606-2616
Young, Patricia A; Yamada, Reiko E; Trinh, Kham R et al. (2018) Activity of Anti-CD19 Chimeric Antigen Receptor T Cells Against B Cell Lymphoma Is Enhanced by Antibody-Targeted Interferon-Alpha. J Interferon Cytokine Res 38:239-254