Dr. Scott L. Weiss, Assistant Professor of Anesthesia, Critical Care, and Pediatrics at the University of Pennsylvania (UPenn) and The Children's Hospital of Philadelphia (CHOP), is committed to his development as a translational scientist studying mitochondrial dysfunction in sepsis, with a particular focus on pediatrics. More than 75,000 children develop sepsis-associated organ dysfunction in the United States each year with over 10 estimated deaths per day and an annual cost of $4.8 billion. Acquired mitochondrial dysfunction can impair cellular bioenergetics and has been implicated as a proximate cause of organ dysfunction in sepsis. If early mitochondrial dysfunction results in organ injury in patients with sepsis, then therapies targeting this pathway could improve outcomes. The candidate's immediate goal is to determine if changes in mitochondrial function are associated with clinical outcomes in sepsis-associated multi-organ dysfunction syndrome (MODS). His long-term goal is to improve outcomes for children with sepsis using therapies targeted to fundamental pathobiology developed through translational research. This career development award will utilize a multidisciplinary network of research and mentorship to ensure the cross-training in clinical research and laboratory methods needed for the translational study of mitochondrial dysfunction in sepsis. This will include close mentorship from both local and international expert scientists in mitochondrial biology, sepsis, and patient-oriented research, coursework focusing on clinical trial design and advanced statistics, and classroom and laboratory experiences to expand his knowledge of mitochondrial biology. To address the lack of a pragmatic tool to measure mitochondrial dysfunction in critically ill children, the candidate has previously demonstrated that circulating blood mononuclear cells (MNCs) exhibit mitochondrial dysfunction in pediatric septic shock and that these blood-based measures correlate with mitochondrial dysfunction in other vital organ systems within an animal model of shock. As an easily accessible cell type in clinical practice, blood MNCs could provide a window into a systemic process affecting vital organ systems and impart insight into a mechanism of sepsis-induced immune dysregulation. The goal of the current research is to determine if mitochondrial dysfunction in blood MNCs is indicative of systemic organ dysfunction and immune dysregulation in pediatric sepsis.
Aim 1 will determine whether mitochondrial dysfunction measured in blood mononuclear cells is associated with vital organ dysfunction in pediatric sepsis in a prospective cohort study of 200 critically ill children with sepsis. The exposure in ths study will be presence versus absence of mitochondrial dysfunction. The primary outcome will be organ failure-free days; secondary outcomes will be prolonged organ dysfunction, new and progressive MODS (NPMODS), shock-free days, ventilator-free days, length of stay, mortality, and functional status.
Aim 2 will test the association of mitochondrial dysfunction in MNCs with the development of immune dysregulation and changes in inflammatory signals in sepsis.
Aim 3 will investigate four compelling mechanisms of mitochondrial dysfunction-increased reactive oxygen species, decreased electron transport system complex activity, aberrant mitochondrial turnover, and decreased mitochondrial gene expression. In summary, the plan outlined in this application will provide an outstanding early career research experience within a rich environment supported by world-class mentorship that will prepare the candidate to become an independent investigator. Completion of the proposed aims will provide the foundation to study if quantifiable deficits in mitochondrial function can inform risk-stratification and targeted mitochondrial-based therapies in critical illness.

Public Health Relevance

Sepsis is a leading cause of morbidity and mortality in the pediatric population. Acquired mitochondrial dysfunction contributes to organ dysfunction by disrupting cellular metabolism and could present a novel therapeutic target. This proposal will investigate whether changes in mitochondrial function in circulating blood mononuclear cells can identify critically ill children with sepsis at risk for progressive organ dysfunction and immune dysregulation who may benefit from mitochondrial-targeted therapies.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Mentored Patient-Oriented Research Career Development Award (K23)
Project #
5K23GM110496-02
Application #
9063583
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Dunsmore, Sarah
Project Start
2015-05-05
Project End
2019-04-30
Budget Start
2016-05-01
Budget End
2017-04-30
Support Year
2
Fiscal Year
2016
Total Cost
Indirect Cost
Name
Children's Hospital of Philadelphia
Department
Type
DUNS #
073757627
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Stenson, Erin K; Cvijanovich, Natalie Z; Anas, Nick et al. (2018) Hyperchloremia Is Associated With Complicated Course and Mortality in Pediatric Patients With Septic Shock. Pediatr Crit Care Med 19:155-160
Irving, Sharon Y; Daly, Bridget; Verger, Judy et al. (2018) The Association of Nutrition Status Expressed as Body Mass Index z Score With Outcomes in Children With Severe Sepsis: A Secondary Analysis From the Sepsis Prevalence, Outcomes, and Therapies (SPROUT) Study. Crit Care Med 46:e1029-e1039
Weiss, Scott L; Deutschman, Clifford S (2018) Are septic children really just ""septic little adults""? Intensive Care Med 44:392-394
Downes, Kevin J; Fitzgerald, Julie C; Schriver, Emily et al. (2018) Implementation of a Pragmatic Biomarker-Driven Algorithm to Guide Antibiotic Use in the Pediatric Intensive Care Unit: the Optimizing Antibiotic Strategies in Sepsis (OASIS) II Study. J Pediatric Infect Dis Soc :
Evans, Idris V R; Phillips, Gary S; Alpern, Elizabeth R et al. (2018) Association Between the New York Sepsis Care Mandate and In-Hospital Mortality for Pediatric Sepsis. JAMA 320:358-367
Lindell, Robert B; Nishisaki, Akira; Weiss, Scott L et al. (2018) Comparison of Methods for Identification of Pediatric Severe Sepsis and Septic Shock in the Virtual Pediatric Systems Database. Crit Care Med :
Glau, Christie L; Conlon, Thomas W; Himebauch, Adam S et al. (2018) Progressive Diaphragm Atrophy in Pediatric Acute Respiratory Failure. Pediatr Crit Care Med 19:406-411
Weiss, Scott L; Keele, Luke; Balamuth, Fran et al. (2017) Crystalloid Fluid Choice and Clinical Outcomes in Pediatric Sepsis: A Matched Retrospective Cohort Study. J Pediatr 182:304-310.e10
Han, Moonjoo; Fitzgerald, Julie C; Balamuth, Fran et al. (2017) Association of Delayed Antimicrobial Therapy with One-Year Mortality in Pediatric Sepsis. Shock 48:29-35
Weiss, Scott L; Asaro, Lisa A; Flori, Heidi R et al. (2017) Multiple Organ Dysfunction in Children Mechanically Ventilated for Acute Respiratory Failure. Pediatr Crit Care Med 18:319-329

Showing the most recent 10 out of 39 publications