Vascular disease is the principal cause of death and disability among the 12 million patients in the United States with diabetes mellitus. Macrovascular complications, including myocardial infarction, stroke, and amputation are the leading cause of morbidity and mortality among this cohort of patients. Reduced bioavailability of endothelium-derived nitric oxide has been implicated in atherogenesis and may be a fundamental factor in the development of vascular disease in diabetes. Increased degradation of nitric oxide by reactive oxygen radicals and inhibition of nitric oxide synthase via activation of protein kinase C are each potential mechanisms to account for decreased nitric oxide. The sponsor's laboratory has demonstrated impaired endothelium-dependent vasodilation in patients with diabetes mellitus and in healthy, nondiabetic subjects with experimental hyperglycemia. Further experiments showed that vitamin C improved endothelium-dependent vasodilation implicating a culpable role for superoxide. The soluble, glutathione-dependent antioxidant pathway, responsible for detoxification of polar peroxides, is also adversely affected by hyperglycemia and may represent a specific physiologic mechanism causing, in part, the impaired endothelial function demonstrated in diabetes mellitus. This proposal will examine the effect of ebselen, a glutathione peroxidase mimetic on endothelial function in subjects with diabetes mellitus (type I and type II) and healthy, age-matched controls to determine if polar peroxides play an important role in endothelial dysfunction in diabetes. Hyperglycemia causes the up-regulation of protein kinase C isoform beta2 (PKC beta2) which may phosphorylate nitric oxide synthase, reducing its activity. This proposal will also examine the role of LY333531, a PKC beta2 inhibitor, on endothelium-dependent vasodilation in forearm resistance and conduit vessels in subjects with type I and type II diabetes mellitus and age-matched health controls.
Showing the most recent 10 out of 13 publications