Dr. Zeenat Safdar is an adult pulmonologist and assistant professor of Medicine at Baylor College of Medicine. Her long-term goal is to become a productive translational researcher with federally-funded research projects. The Baylor Pulmonary Hypertension Center is the largest PH center in Texas with more than 500 PAH patients. The proposed didactic training program specifically designed for Dr. Safdar includes participation in the Clinical Scientist Training Program (CSTP;K30-funded) leading to a Master's Degree followed by Ph.D in Clinical Investigation, formal mentoring by a primary mentor and a multidisciplinary advisory committee, and courses in advanced biostatistics, research design, epidemiology and ethics. She will obtain hands-on training in (1) immunohistochemistry techniques in transplanted lungs, (2) ELISA, RIA and flow cytometry, and (3) conducting and analyzing a prospective randomized clinical trial from inception to completion. PAH is a lethal disease characterized by remodeling of pulmonary arterioles with hypertrophy and collagen deposition. Aldosterone is a key neurohormonal factor that augments vascular fibrosis. Biosynthesis of aldosterone was documented in human pulmonary artery endothelial cells. Our preliminary data showing an elevation in the circulating aldosterone levels in a subset of PAH subjects suggest that renin-angiotensin- aldosterone system (RAAS) is dysregulated in PAH. Preliminary data in 12 PAH subjects from our laboratory showed that elevated collagen marker (PIIINP) correlated with worse functional status and hemodynamic data. Recent evidence suggests that aldosterone pro-fibrotic effects are mediated through TGF-beta-Smad2/3 signaling. New preliminary data showed increased expression of phosphorylated Smad2 in peripheral blood monocytes from a PAH patient suggesting that PAH may be associated with activation of the TGF-beta- Smad2/3 signaling cascade. Collectively, this data underscore the importance of studying RAAS and down- stream signaling in PAH.
Specific Aim 1 will test the hypothesis that the RAAS is activated to a greater degree in PAH as compared to age- and gender-matched normal controls and that activation of RAAS/TGF- beta/Smad2/3 signaling is a marker for worse clinical outcomes in PAH subjects.
Specific Aim 2 will test two interrelated hypotheses in PAH patients: first circulating biomarkers of collagen, indices of collagen degrada- tion and activation of theTGF-beta/Smad2/3 system will be present compared to age- and gender-matched controls;second, these levels will correlate with pulmonary vascular resistance and circulating levels of aldos- terone.
Specific Aim 3 will test the hypothesis that treatment of PAH subjects with an aldosterone receptor antagonist, spironolactone, is associated with reduction in circulating biomarkers of collagen synthesis and/or collagen degradation and reduced TGF-beta-Smad2/3 signaling. This award will guarantee the protected time needed for Dr. Safdar's development into an independent clinical investigator. Completion of this project will advance our understanding of some of the mechanisms that underlie disease worsening in PAH.

Public Health Relevance

Importance of the Knowledge to be gained Pulmonary arterial hypertension (PAH), a progressive disease, leads to right heart failure and largely affects young females. Our study will test the clinical use of spironolactone (a diuretic) in PAH that may fundamentally change the current clinical approach to patients with this disease. In addition, our study will test new biomarker panel in a large group of PAH patients and may lead to new diagnostic tests that may help identify patients at risk of poor outcome.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Mentored Patient-Oriented Research Career Development Award (K23)
Project #
5K23HL093214-05
Application #
8669041
Study Section
Special Emphasis Panel (ZHL1-CSR-R (M1))
Program Officer
Colombini-Hatch, Sandra
Project Start
2010-08-01
Project End
2015-05-31
Budget Start
2014-06-01
Budget End
2015-05-31
Support Year
5
Fiscal Year
2014
Total Cost
$141,750
Indirect Cost
$10,500
Name
Baylor College of Medicine
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
051113330
City
Houston
State
TX
Country
United States
Zip Code
77030
Safdar, Zeenat; Tamez, Emilio; Frost, Adaani et al. (2015) Collagen Metabolism Biomarkers and Health Related Quality of Life in Pulmonary Arterial Hypertension. Int J Cardiovasc Res 4:
Safdar, Zeenat; Thakur, Aishwarya; Singh, Supriya et al. (2015) Circulating Aldosterone Levels and Disease Severity in Pulmonary Arterial Hypertension. J Pulm Respir Med 5:
Safdar, Zeenat; Tamez, Emilio; Chan, Wenyaw et al. (2014) Circulating collagen biomarkers as indicators of disease severity in pulmonary arterial hypertension. JACC Heart Fail 2:412-21
Honeycutt, Gregory R; Safdar, Zeenat (2013) Pulmonary hypertension complicated by pericardial effusion: a single center experience. Ther Adv Respir Dis 7:151-9
Safdar, Zeenat (2013) Pulmonary arterial hypertension in pregnant women. Ther Adv Respir Dis 7:51-63
Duarte, Alexander G; Thomas, Shibu; Safdar, Zeenat et al. (2013) Management of pulmonary arterial hypertension during pregnancy: a retrospective, multicenter experience. Chest 143:1330-1336
Cantu, Jose; Wang, Degang; Safdar, Zeenat (2012) Clinical implications of haemoptysis in patients with pulmonary arterial hypertension. Int J Clin Pract Suppl :5-12
Safdar, Zeenat (2011) Effect of transition from sitaxsentan to ambrisentan in pulmonary arterial hypertension. Vasc Health Risk Manag 7:119-24
Safdar, Zeenat (2010) Targeted oral therapies in the treatment of pulmonary arterial hypertension. Clin Drug Investig 30:811-26
Cantu, Jose A; Safdar, Zeenat (2010) Hemoptysis requiring bronchial artery embolization in pulmonary arterial hypertension. South Med J 103:887-91