This K24 application has supported my career development in patient oriented research and mentoring. The original grant focused on clinical studies using new agents which putatively target epigenetically-mediated aberrant gene transcription in cancer. These included a Phase I study of a novel combination of the DNA methyltransferase inhibitor 5-azacytidine (5AC) with an oral histone deacetylase (HDAC) inhibitor entinostat in patients with myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML);a randomized Phase II trial of two schedules of the HDAC inhibitor vorinostat in patients with relapsed or high risk AML;and a national US Leukemia Intergroup randomized Phase II trial (E1905) comparing the 5AC/entinostat combination to 5AC alone for the treatment of MDS, chronic myelomonocytic leukemia, and AML with trilineage dysplasia (MDS-associated, AML-TLD). Together with intensive correlative laboratory science aimed at dissecting the mechanisms by which these """"""""epigenetically targeted"""""""" drugs exert their clinical activity, these studies have been fertile ground for intensive mentoring of pre- and post-doctoral trainees in biologically-driven drug development. This renewal application requests an additional five years of funding to continue my development in patient oriented research and mentoring as I continue to build integrated programs in epigenetically targeted drug development in hematologic malignancies at Johns Hopkins and nationally, and increase my abilities and reach as a mentor to more junior faculty at Hopkins and at other institutions. The research in which mentees will be involved includes the correlative science associated with E1905, which is the first major trial to critically assess the clinical benefit of the addition of an HDAC inhibitor to a DNA methyltransferase inhibitor. These combinations have been developed based on in vitro data demonstrating synergistic re-expression of genes silenced through methylation of cytosines in gene promoters. The correlative studies focus on identifying alterations and signatures in the DNA methylome upon treatment, which correlate with clinical response to 5AC/entinostat.
The second aim will compare clinical outcomes when entinostat is given in a sequential manner (following 5AC) rather than the current overlapping schedule.
The third aim will examine to what extent epigenetic modifications differ when the HDAC inhibitor is given concomitantly with the DNMT inhibitor versus sequential administration

Public Health Relevance

Drugs which target aberrant transcription in cancer through modification of epigenetic marks demonstrate marked activity in myeloid leukemias;however the mechanism by which these drugs improve clinical outcome remains uncertain. Understanding the mechanism underlying clinically activity is critical for development of better drugs, and for the effective development of epigenetically-targeted strategies in other more common cancers.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Midcareer Investigator Award in Patient-Oriented Research (K24)
Project #
5K24CA111717-07
Application #
8293079
Study Section
Subcommittee G - Education (NCI)
Program Officer
Lim, Susan E
Project Start
2004-12-01
Project End
2016-06-30
Budget Start
2012-07-01
Budget End
2013-06-30
Support Year
7
Fiscal Year
2012
Total Cost
$197,100
Indirect Cost
$14,600
Name
Johns Hopkins University
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Uy, Natalie; Singh, Abhay; Gore, Steven D et al. (2017) Hypomethylating agents (HMA) treatment for myelodysplastic syndromes: alternatives in the frontline and relapse settings. Expert Opin Pharmacother 18:1213-1224
Zeidan, Amer M; Wang, Rong; Gross, Cary P et al. (2017) Modest improvement in survival of patients with refractory anemia with excess blasts in the hypomethylating agents era in the United States. Leuk Lymphoma 58:982-985
Pine, Alexander B; Lee, Eun-Ju; Sekeres, Mikkael et al. (2017) Wide variations in blood product transfusion practices among providers who care for patients with acute leukemia in the United States. Transfusion 57:289-295
Zeidan, Amer M; Smith, B Douglas; Carraway, Hetty E et al. (2017) A phase 2 trial of high dose lenalidomide in patients with relapsed/refractory higher-risk myelodysplastic syndromes and acute myeloid leukaemia with trilineage dysplasia. Br J Haematol 176:241-247
Podoltsev, Nikolai A; Stahl, Maximilian; Zeidan, Amer M et al. (2017) Selecting initial treatment of acute myeloid leukaemia in older adults. Blood Rev 31:43-62
Ball, Brian; Zeidan, Amer; Gore, Steven D et al. (2017) Hypomethylating agent combination strategies in myelodysplastic syndromes: hopes and shortcomings. Leuk Lymphoma 58:1022-1036
Wang, Rong; Zeidan, Amer M; Yu, James B et al. (2017) Myelodysplastic Syndromes and Acute Myeloid Leukemia After Radiotherapy for Prostate Cancer: A Population-Based Study. Prostate 77:437-445
Boyiadzis, Michael; Bishop, Michael R; Abonour, Rafat et al. (2016) The Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of hematologic malignancies: multiple myeloma, lymphoma, and acute leukemia. J Immunother Cancer 4:90
Fletcher, Sean A; Cronin, Angel M; Zeidan, Amer M et al. (2016) Intensity of end-of-life care for patients with myelodysplastic syndromes: Findings from a large national database. Cancer 122:1209-15
Garcia-Manero, G; Gore, S D; Kambhampati, S et al. (2016) Efficacy and safety of extended dosing schedules of CC-486 (oral azacitidine) in patients with lower-risk myelodysplastic syndromes. Leukemia 30:889-96

Showing the most recent 10 out of 80 publications