What basic mechanisms underlie development and how can we manipulate, disrupt, or correct them? I propose to study the collective behavior of Dictyostelium discoideum - a classic model organism for cell-cell signaling - focusing on how single-cell dynamics influence and give rise to the behavior of the aggregate. During starvation, Dictyostelium cells periodically secrete the chemoattractant cAMP, inducing production of cAMP in other cells. The result is a wavelike signal relay, and, ultimately, cellular aggregation. This transition from single-celled to multicellular life provides an ideal system to utilize my background in condensed matter physics to address a fundamental question in biology. At Princeton, I will collaborate closely with Thomas Gregor's lab, which developed the first FRET reporter of intracellular cAMP concentration. Their quantitative experiments provide a unique opportunity to connect the behavior of individual cells with the consequent fate of the population. The guidance of my mentor Ned Wingreen, an expert in bacterial chemotaxis, gradient sensing, and cell-cell communication, will be an invaluable resource. Through analysis of quantitative single-cell experiments, I have developed a model of the single-cell response to extracellular cAMP. My preliminary studies indicate that each cell behaves as an excitable system (a prime example is a spiking neuron). I will extend this model to study collective spatial dynamics mediated by diffusion of cAMP. In preliminary studies, I considered a """"""""mean-field"""""""" situation, as in a well-mixed perfusion chamber, finding an intriguing dynamical quorum-sensing transition. To include spatial dynamics, I will first construct a model of spatial gradient sensing - unifying the concepts of excitability, adaptation, and directional sensing - guided by microfluidics-based experiments performed by the Gregor Lab. With this model, I will quantitatively reproduce aggregation through simulations of chemotactic cells. I will compare aggregation fidelity, measured by the size and spatial distribution of mound centers, against other chemotaxis mechanisms lacking excitable dynamics. I will then explore ways to disrupt faithful aggregation and make predictions for the behavior of various Dictyostelium mutants that can be tested in the Gregor Lab. Answering the questions in this proposal requires the right balance between using my background in condensed matter physics theory and engaging with the details of a complex biological system. The proposed project is therefore ideal for my transition to become an independent researcher working in the field of quantitative biology-it will allow me to use my established skills and to develop new ones. The environment at Princeton, both due to the guidance of my mentors, Professors Ned Wingreen and Thomas Gregor, and the greater community of quantitative biologists, provides an ideal setting to develop into an effective independent investigator.

Public Health Relevance

Understanding how modifications of single cells alter population-level dynamics may lead to new ideas for drugs and therapies. My findings are likely to be applicable to systems related to Dictyostelium, e.g. neutrophils migrating collectively withi lymph nodes or self-organized tissue migration during embryogenesis. In summary, I propose to use insights into cellular dynamics to reprogram macroscopic behaviors, which are best controlled at molecular and cellular levels.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Mentored Quantitative Research Career Development Award (K25)
Project #
1K25GM098875-01A1
Application #
8301192
Study Section
Modeling and Analysis of Biological Systems Study Section (MABS)
Program Officer
Maas, Stefan
Project Start
2012-09-01
Project End
2017-05-31
Budget Start
2012-09-01
Budget End
2013-05-31
Support Year
1
Fiscal Year
2012
Total Cost
$123,890
Indirect Cost
$7,696
Name
Princeton University
Department
Type
Organized Research Units
DUNS #
002484665
City
Princeton
State
NJ
Country
United States
Zip Code
08544
Yang, Xingbo; Kaj, Kelson J; Schwab, David J et al. (2017) Coordination of size-control, reproduction and generational memory in freshwater planarians. Phys Biol 14:036003
Sgro, Allyson E; Schwab, David J; Noorbakhsh, Javad et al. (2015) From intracellular signaling to population oscillations: bridging size- and time-scales in collective behavior. Mol Syst Biol 11:779
Noorbakhsh, Javad; Schwab, David J; Sgro, Allyson E et al. (2015) Modeling oscillations and spiral waves in Dictyostelium populations. Phys Rev E Stat Nonlin Soft Matter Phys 91:062711
Schwab, David J; Houk, James C (2015) Presynaptic Inhibition in the Striatum of the Basal Ganglia Improves Pattern Classification and Thus Promotes Superior Goal Selection. Front Syst Neurosci 9:152
Schwab, David J; Nemenman, Ilya; Mehta, Pankaj (2014) Zipf's law and criticality in multivariate data without fine-tuning. Phys Rev Lett 113:068102
Bitbol, Anne-Florence; Schwab, David J (2014) Quantifying the role of population subdivision in evolution on rugged fitness landscapes. PLoS Comput Biol 10:e1003778
Schwab, David J; Baetica, Ania; Mehta, Pankaj (2012) Dynamical quorum-sensing in oscillators coupled through an external medium. Physica D 241:1782-1788
Schwab, David J; Plunk, Gabriel G; Mehta, Pankaj (2012) Kuramoto model with coupling through an external medium. Chaos 22:043139
Mehta, Pankaj; Schwab, David J (2012) Energetic costs of cellular computation. Proc Natl Acad Sci U S A 109:17978-82