Despite the frequency of climate-related natural disasters (e.g., hurricanes, floods), little is known about how such disasters affect all-cause human mortality and morbidity. Research identifying health risks for all-cause mortality and morbidity, including cardiovascular and respiratory risks, would inform disaster planning and response. Furthermore, climate change is likely to change patterns of climate-related disasters, making it critical to understand health risks associated with current climate-related disasters to fully understand health risks associated with future climate change. However, research on the effects of disasters on all-cause, cardiovascular, and respiratory mortality and morbidity is difficult to conduct with current disaster epidemiology methods. Most disaster epidemiology either focuses on quickly identifying the health risks associated with a single disaster as part of disaster response or investigates only health outcomes classified by a medical examiner as """"""""disaster-related"""""""". During the training phase of this grant, Dr. Anderson will develop statistical methods to investigate the effects of climate-related disasters on all-cause, cardiovascular and respiratory health outcomes by combining current methods and concepts from two types of analysis: episode analysis and environmental time series analysis (Aim 1). During the independent phase of the grant, she will apply these methods to quantify effects of cyclonic storms (hurricanes, tropical storms, and tropical depressions) on all- cause, cardiovascular, and respiratory mortality and Medicare hospitalizations in the United States (Aim 2). For this analysis, she will link national datasets of daily health data from the National Center for Health Statistics and Medicare billing with storm data from the National Climatic Data Center's Storm Data and the University of South Carolina's Spatial Hazard Events and Losses Database to conduct a multi-year, multi-community analysis of the health effects of cyclonic storms. She will also determine how the health risks of cyclonic storms are modified by the infrastructure damage caused by each storm (Aim 3). To do this, she will work with a co- mentor who models infrastructure risks associated with climate-related disasters, and use both these models of infrastructure risk and data from utility companies and state departments of transportation to quantify how the health risk associated with a storm modifies its effects on all-cause, cardiovascular, and respiratory morbidity and Medicare hospitalizations. Dr. Anderson is well suited to perform this research based on 1) her past research experience investing the effects of temperature and air pollution on all-cause health outcomes in national studies, 2) her access, through mentors, co-mentors, and her research institution, to extensive national health and infrastructure data;and 3) her access to world-class mentorship, training, and coursework in statistical methods and disaster risks. The proposed research and training will allow Dr. Anderson to establish an independent career as a leader in the epidemiology of climate-related natural disasters.

Public Health Relevance

Despite the frequency of climate-related natural disasters, like hurricanes, winter storms, and floods, little is known about their effects on all-cause human mortality and morbidity. The proposed research will develop statistical methods to investigate effects of climate-related disasters on all-cause morbidity and mortality, and then apply these methods to investigate the effects of cyclonic storms-hurricanes, tropical storms, and tropical depressions-on human health in the United States.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Career Transition Award (K99)
Project #
5K99ES022631-02
Application #
8732652
Study Section
Special Emphasis Panel (ZES1)
Program Officer
Dilworth, Caroline H
Project Start
2013-09-10
Project End
2015-08-31
Budget Start
2014-09-01
Budget End
2015-08-31
Support Year
2
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Johns Hopkins University
Department
Biostatistics & Other Math Sci
Type
Schools of Public Health
DUNS #
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Oleson, K W; Anderson, G B; Jones, B et al. (2018) Avoided climate impacts of urban and rural heat and cold waves over the U.S. using large climate model ensembles for RCP8.5 and RCP4.5. Clim Change 146:377-392
Madrigano, Jaime; Jack, Darby; Anderson, G Brooke et al. (2015) Temperature, ozone, and mortality in urban and non-urban counties in the northeastern United States. Environ Health 14:3
Gubernot, Diane M; Anderson, G Brooke; Hunting, Katherine L (2015) Characterizing occupational heat-related mortality in the United States, 2000-2010: an analysis using the Census of Fatal Occupational Injuries database. Am J Ind Med 58:203-11
Anderson, G Brooke (2014) Commentary: Tolstoy's heat waves: each catastrophic in its own way? Epidemiology 25:365-7
White-Newsome, Jalonne L; Ekwurzel, Brenda; Baer-Schultz, Mia et al. (2014) Survey of county-level heat preparedness and response to the 2011 summer heat in 30 U.S. States. Environ Health Perspect 122:573-9
Petkova, Elisaveta P; Bader, Daniel A; Anderson, G Brooke et al. (2014) Heat-related mortality in a warming climate: projections for 12 U.S. cities. Int J Environ Res Public Health 11:11371-83
Gubernot, Diane M; Anderson, G Brooke; Hunting, Katherine L (2014) The epidemiology of occupational heat exposure in the United States: a review of the literature and assessment of research needs in a changing climate. Int J Biometeorol 58:1779-88
Fisher, Aaron; Anderson, G Brooke; Peng, Roger et al. (2014) A randomized trial in a massive online open course shows people don't know what a statistically significant relationship looks like, but they can learn. PeerJ 2:e589