Chronic obstructive pulmonary disease (COPD) is the third leading cause of death in America, and, in 2011, 12.7 million US adults were estimated to have COPD. This disease is characterized by the progressive development of inflammation-induced airflow limitation, parenchymal destruction, and other systemic manifestations. Recognizing the limited advances in lung focused treatment options, it is of particular interest that skeletal muscle dysfunction is a frequent and clinically relevant systemic consequences of COPD that predicts morbidity and mortality, independently from the severity of lung function impairement. Several factors have been implicated in the development of muscle dysfunction with COPD, but oxidative stress has been suggested to play a major role. In other diseased states, also characterized by chronic oxidative stress (e.g. aging and cardiovascular disease), dysfunctional O2 transport and muscle metabolism in the periphery have been linked to both a lower nitric oxide (NO) bioavailability and nitric oxide synthase (NOS) uncoupling induced by a deficit in tetrahydrobiopterin (BH4). However, despite its potential as a novel target for therapeutic treatment, evidence of BH4 deficit-induced NOS uncoupling on the development of peripheral dysfunction with COPD is still lacking. Therefore, the goal of this project is to addres this gap in existing knowledge by elucidating the role of BH4 bioavailabiity and NOS coupling on peripheral O2 transport and muscle metabolism in patients suffering from COPD, with the prospective that BH4 supplemetation may be able to restore muscle function and improve the quality of life of these patients . Accordingly, during the K99 phase of this project, we will explre whether the severity of peripheral dysfunction assessed by several indices (perfusion/metabolism matching, limb blood flow, mitochondrial function in vivo and in permeabilized fibers, and contractile efficiency) during exercise in patients with COPD is related to the level of oxidative stress, as well as BH4 and NO bioavailability (Aim 1). We will then examine the effects of acute (Aim 2) and chronic (Aim 3) supplementations of BH4 on NOS coupling, the level of oxidative stress and NO bioavailability in the muscle and the vasculature, with the ultimate goal to restore skeletal muscle function and the functionnal capacity of these patients. To achieve these aims, we will use a comprehensive approach combining in vivo Near-Infrared Spectroscopy (NIRS), Doppler Ultrasound, Arterial Spin Labeling (ASL), and 31P-MRS measurements of O2 transport and muscle metabolism in exercising muscle, and in vitro methods utilizing molecular techniques to assess the level of oxidative stress, and permeabilized fibers to further interrogate mitochondrial respiration. At the conclusion of these studies, we will have expanded our knowledge of the mechanisms underlying muscle dysfunction in patients suffering from COPD, and, perhaps more important from a clinical perspective, provided insight into a potential novel therapeutic treatment for this disease.

Public Health Relevance

Skeletal muscle dysfunction is a frequent and clinically relevant systemic manifestation of Chronic Pulmonary Obstructive Disease (COPD), which is still poorly understood. Therefore, the focus of this proposal is on the role of a deficit in tetrahydrobiopterin and nitric oxide synthase uncoupling induced by chronic oxidative stress on metabolic and vascular abnormalities in skeletal muscle of patients suffering from COPD. The ultimate goal of this project is to provide insight into a potential novel therapeutic treatment for this disease.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Career Transition Award (K99)
Project #
1K99HL125756-01
Application #
8804403
Study Section
Special Emphasis Panel (ZHL1-CSR-P (O1))
Program Officer
Tigno, Xenia
Project Start
2015-09-04
Project End
2017-08-31
Budget Start
2015-09-04
Budget End
2016-08-31
Support Year
1
Fiscal Year
2015
Total Cost
$138,780
Indirect Cost
$10,280
Name
University of Utah
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
009095365
City
Salt Lake City
State
UT
Country
United States
Zip Code
84112
Broxterman, Ryan M; Layec, Gwenael; Hureau, Thomas J et al. (2018) Response. Med Sci Sports Exerc 50:1719
Hart, Corey R; Layec, Gwenael; Trinity, Joel D et al. (2018) Increased skeletal muscle mitochondrial free radical production in peripheral arterial disease despite preserved mitochondrial respiratory capacity. Exp Physiol 103:838-850
Layec, Gwenael; Blain, Gregory M; Rossman, Matthew J et al. (2018) Acute High-Intensity Exercise Impairs Skeletal Muscle Respiratory Capacity. Med Sci Sports Exerc 50:2409-2417
Trinity, Joel D; Layec, Gwenael; Hart, Corey R et al. (2018) Sex-specific impact of aging on the blood pressure response to exercise. Am J Physiol Heart Circ Physiol 314:H95-H104
Berg, Ole Kristian; Kwon, Oh Sung; Hureau, Thomas J et al. (2018) Maximal strength training increases muscle force generating capacity and the anaerobic ATP synthesis flux without altering the cost of contraction in elderly. Exp Gerontol 111:154-161
Layec, Gwenael; Hart, Corey R; Trinity, Joel D et al. (2017) Oxygen delivery and the restoration of the muscle energetic balance following exercise: implications for delayed muscle recovery in patients with COPD. Am J Physiol Endocrinol Metab 313:E94-E104
Broxterman, Ryan M; Layec, Gwenael; Hureau, Thomas J et al. (2017) Bioenergetics and ATP Synthesis during Exercise: Role of Group III/IV Muscle Afferents. Med Sci Sports Exerc 49:2404-2413
Layec, Gwenael; Trinity, Joel D; Hart, Corey R et al. (2016) Evidence of a metabolic reserve in the skeletal muscle of elderly people. Aging (Albany NY) 9:52-67
Trinity, Joel D; Wray, D Walter; Witman, Melissa A H et al. (2016) Ascorbic acid improves brachial artery vasodilation during progressive handgrip exercise in the elderly through a nitric oxide-mediated mechanism. Am J Physiol Heart Circ Physiol 310:H765-74
Park, Song-Young; Ives, Stephen J; Gifford, Jayson R et al. (2016) Impact of age on the vasodilatory function of human skeletal muscle feed arteries. Am J Physiol Heart Circ Physiol 310:H217-25

Showing the most recent 10 out of 19 publications