The UCLA CTSI is an academic-clinical-community partnership designed to accelerate scientific discoveries and clinical breakthrougtis to improve healtti in the most populous and diverse county in the United States. An ethnic, economic and cultural mosaic, Los Angeles County provides challenges for health and disease research that few counties replicate. Our mission is to create a borderless clinical and translational research institute that brings UCLA innovations and resources to bear on the greatest health needs of Los Angeles. We are aligning our strengths to support clinical and translational science that is in full partnership with and responsive to the needs of our Los Angeles community. Our UCLA CTSI is bridging disciplinary and institutional boundaries to create transdisciplinary teams focused on the greatest opportunities as well as the greatest needs in our region. CTSA funding will accelerate our progress in achieving our transformative mission and allow the UCLA CTSI to make significant contributions to the goals of the national CTSA consortium. To accomplish our mission the UCLA CTSI has established five goals: 1) Create an academic home for clinical and translational science that integrates and builds on the many strengths of UCLA and its partners, 2) Build transdisciplinary research teams to accelerate and translate discovery to improve health, 3) Transiform educational and career development programs to promote the next generation of clinician investigators and translational scientists, 4) Advance and expand strong bi-directional academic-community partnerships to ensure that new scientific discovery is relevant to community needs and, 5) Serve as a national resource for collaborative research through regional, statewide and national CTSA consortia. In transforming our research enterprise, the UCLA-CTSl is guided by core principles including team science, flexible research infrastructure and community engagement. The UCLA CTSI is built on a strong foundation of success in discovery, translational science, community engagement and health services research. Unique resources of the UCL/ CTSI include close collaborations with world-leading centers, institutes, schools and programs with which we will co-fund and conduct our clinical and translational science. With institutional support in the pre-award period, the UCLA CTSI has taken significant strides to transform its approach to clinical and translational biomedical research. CTSA funding will accelerate our progress in achieving our transformative mission and allow the UCLA CTSI to make significant contributions to the goals of the national CTSA consortium.

Public Health Relevance

Los Angeles County offers an ideal environment for developing effective translational strategies and faces challenges including subpopulations who are underrepresented in all phases of research. Further its fragmented health care systems require implementation, dissemination and diffusion research for scientific discovery to have a large social impact. As the US population becomes more diverse in the 21^'Century, our experiences and successes will offer a model for health improvement nationwide.

Agency
National Institute of Health (NIH)
Institute
National Center for Advancing Translational Sciences (NCATS)
Type
Mentored Career Development Award (KL2)
Project #
5KL2TR000122-03
Application #
8473977
Study Section
Special Emphasis Panel (ZRR1-CR-3 (01))
Program Officer
Talbot, Bernard
Project Start
2011-06-01
Project End
2016-02-29
Budget Start
2013-03-01
Budget End
2014-02-28
Support Year
3
Fiscal Year
2013
Total Cost
$1,217,744
Indirect Cost
$90,203
Name
University of California Los Angeles
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
092530369
City
Los Angeles
State
CA
Country
United States
Zip Code
90095
Arevian, Armen C; Bell, Doug; Kretzman, Mark et al. (2018) Participatory methods to support team science development for predictive analytics in health. J Clin Transl Sci 2:178-182
Shen, John; Chang, Jason; Mendenhall, Melody et al. (2018) Diverse cutaneous adverse eruptions caused by anti-programmed cell death-1 (PD-1) and anti-programmed cell death ligand-1 (PD-L1) immunotherapies: clinical features and management. Ther Adv Med Oncol 10:1758834017751634
Momcilovic, Milica; Bailey, Sean T; Lee, Jason T et al. (2018) Utilizing 18F-FDG PET/CT Imaging and Quantitative Histology to Measure Dynamic Changes in the Glucose Metabolism in Mouse Models of Lung Cancer. J Vis Exp :
Pevnick, Joshua M; Nguyen, Caroline; Jackevicius, Cynthia A et al. (2018) Improving admission medication reconciliation with pharmacists or pharmacy technicians in the emergency department: a randomised controlled trial. BMJ Qual Saf 27:512-520
Dhar, Manjima; Wong, Jessica; Che, James et al. (2018) Evaluation of PD-L1 expression on vortex-isolated circulating tumor cells in metastatic lung cancer. Sci Rep 8:2592
Allyn, P R; O'Malley, S M; Ferguson, J et al. (2018) Attitudes and potential barriers towards hepatitis C treatment in patients with and without HIV coinfection. Int J STD AIDS 29:334-340
Sehl, Mary E; Wicha, Max S (2018) Modeling of Interactions between Cancer Stem Cells and their Microenvironment: Predicting Clinical Response. Methods Mol Biol 1711:333-349
Lidofsky, Anna; Holmes, Jacinta A; Feeney, Eoin R et al. (2018) Macrophage Activation Marker Soluble CD163 Is a Dynamic Marker of Liver Fibrogenesis in Human Immunodeficiency Virus/Hepatitis C Virus Coinfection. J Infect Dis 218:1394-1403
Seidman, Laura C; Brennan, Kathleen M; Rapkin, Andrea J et al. (2018) Rates of Anovulation in Adolescents and Young Adults with Moderate to Severe Primary Dysmenorrhea and Those without Primary Dysmenorrhea. J Pediatr Adolesc Gynecol 31:94-101
Wang, Piwen; Solorzano, Walter; Diaz, Tanya et al. (2017) Arctigenin inhibits prostate tumor cell growth in vitro and in vivo. Clin Nutr Exp 13:1-11

Showing the most recent 10 out of 109 publications