The vagus nerve is regarded as the main parasympathetic conduit of the autonomic nervous system and is involved in the regulation of multiple visceral organs. Vagus nerve stimulation (VNS) has been suggested and/or used as a neuromodulatory therapy for multiple visceral organ disorders, from hypertension to functional dyspepsia and gastroparesis. However, given that VNS is an invasive procedure and has been associated with significant adverse events, the mapping of alternative non-invasive pathways for vagal modulation is of critical relevance. Interestingly, the auricular branch of the vagus (ABVN) is the only peripheral branch of this nerve that distributes to the skin. Previous animal studies have demonstrated that ABVN sensory fibers terminate in the nucleus tractus solitarius (NTS), and, similar to invasive VNS, ABVN stimulation has also been shown to modulate cardiac and gut function. While the anatomy of this nerve has been studied in detail, the functional mapping of the circuitry connecting ABVN stimulation with cardiovascular and gastrointestinal outcomes remains poorly understood. Moreover, as NTS activity and the dorsal medullary vagal system operates in tune with respiration, our group has previously suggested that the neuromodulatory effects of ABVN afference can be optimized by gating stimulation to the respiratory cycle. Hence, our overall goal is to functionally map the ABVN-brainstem-vagal outflow pathway in humans and assess its sensitivity to the modulatory effects of respiration. We will apply state-of-the-art ultrahigh-field functional MRI (7T fMRI), which will afford enhanced spatiotemporal resolution to evaluate the response of the dorsal medullary vagal system and hypothalamus to ABVN stimulation. Neuroimaging will incorporate simultaneous cardiophysiological assessment and dynamic high frequency heart rate variability (HF-HRV) assessment of cardiovagal modulation, using advanced point-process adaptive filtering algorithms developed by our group. Novel stomach MRI pulse sequences will be used to assess stomach accommodation and peristalsis in conjunction with brain fMRI during ABVN stimulation. In summary, the functional mapping of the ABVN pathway in humans is of pivotal importance given its accessibility and its potential neuromodulatory effects on cardiovascular and gastrointestinal physiology, and our proposal will significantly improve our understanding of the mapping from auricular vagus nerve receptors to visceral organs.

Public Health Relevance

The vagus nerve is the main parasympathetic conduit of the autonomic nervous system and is involved in the regulation of cardiac physiology. Vagus nerve stimulation may be an important neuromodulatory approach to impact heart function, and cutaneous vagal receptors have been identified in a specific region of the ear. Targeting these receptors offers a viable non-invasive approach to vagus nerve stimulation and our proposal will apply non-invasive ultrahigh field MRI and cardiophysiological monitoring in humans, and cervical vagus nerve activity recording and cardiophysiological monitoring with and without invasive brainstem nuclei blocking studies in rats to map the neurophysiological pathway from the auricular branch of the vagus nerve to the heart.

Agency
National Institute of Health (NIH)
Institute
Office of The Director, National Institutes of Health (OD)
Project #
3OT2OD023867-01S4
Application #
9981061
Study Section
Anatomical and Functional Mapping of the Innervation of Marjor Internal Organs (AFMI)
Program Officer
Qashu, Felicia M
Project Start
2016-09-28
Project End
2020-07-31
Budget Start
2019-08-01
Budget End
2020-07-31
Support Year
1
Fiscal Year
2019
Total Cost
Indirect Cost
Name
Massachusetts General Hospital
Department
Type
DUNS #
073130411
City
Boston
State
MA
Country
United States
Zip Code
02114
Sclocco, Roberta; Beissner, Florian; Bianciardi, Marta et al. (2018) Challenges and opportunities for brainstem neuroimaging with ultrahigh field MRI. Neuroimage 168:412-426
Garcia, Ronald G; Lin, Richard L; Lee, Jeungchan et al. (2017) Modulation of brainstem activity and connectivity by respiratory-gated auricular vagal afferent nerve stimulation in migraine patients. Pain 158:1461-1472
Song, Andrew H; Kucyi, Aaron; Napadow, Vitaly et al. (2017) Pharmacological Modulation of Noradrenergic Arousal Circuitry Disrupts Functional Connectivity of the Locus Ceruleus in Humans. J Neurosci 37:6938-6945