Alarming increases in the incidence, morbidity and mortality from allergic asthma in children have been documented in the US over the last decade. The underlying cause(s) of this increase are unknown. Recent epidemiological studies have documented a positive association between levels of urban airborne particulate matter (PM) and exacerbations of asthma, although a causal relationship has not been established. Importantly, preliminary studies conducted in the Center have provided compelling evidence that reductions in ambient airborne PM in homes of asthmatic children is associated with significant improvement in asthma morbidity. However, the exact mechanisms by which indoor PM exposure may exacerbate or induce asthma remain unknown. Our preliminary data suggest that exposure of mice to outdoor sources of PM alone in the absence of allergen exposure induces many features of the allergic response (Airway hyperresponsiveness, airway inflammation, Th2 cytokine production). Furthermore, our data suggest that the induction of airway hyperresponsiveness is mediated via the innate immune system mediator, complement factor 3 (C3). Interestingly, several components of indoor PM (i.e. allergens, outdoor source PM, tobacco smoke) have also been shown to activate the complement pathway. Thus the overall goal of this proposal is to establish a causal relationship between airborne indoor PM exposure and asthma morbidity and to determine the mechanisms by which indoor PM elicits these effects. Thus, we plan to test the hypothesis that individual components of indoor PM exposure serve to enhance adaptive immune responses to allergens by inducing the release or activation of C3.
The specific aims of this proposal are: First, to determine whether exposure to airborne indoor PM collected from homes in urban Baltimore induces the onset or worsening of allergic asthma. Specifically, we will compare the biologic effects of PM collected in homes of children with mild and severe asthma stratified for the presence of smokers in the home. Secondly, to determine whether a gene-environment interaction is important in responses to indoor PM, we will determine the biological effects of indoor PM exposure in non-allergic strains of mice. Thirdly, we will determine the role of C3 in mediating airborne indoor PM-induced inflammation and/or exacerbations of allergic asthmatic symptoms by comparing these responses in C3 deficient and wildtype mice. These studies will provide insight into the immunopathogenic mechanisms involved in PM-induced exacerbation of asthma and establish a dose-relationship upon which to base air quality standards to protect the health of susceptible individuals in our society such as asthmatic children living in urban environments.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Research Program Projects (P01)
Project #
5P01ES009606-10
Application #
7523261
Study Section
Special Emphasis Panel (ZES1)
Project Start
Project End
Budget Start
2007-11-01
Budget End
2008-10-31
Support Year
10
Fiscal Year
2008
Total Cost
$99,717
Indirect Cost
Name
Johns Hopkins University
Department
Type
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Williams, D' Ann L; McCormack, Meredith C; Matsui, Elizabeth C et al. (2016) Cow allergen (Bos d2) and endotoxin concentrations are higher in the settled dust of homes proximate to industrial-scale dairy operations. J Expo Sci Environ Epidemiol 26:42-7
Bose, Sonali; Breysse, Patrick N; McCormack, Meredith C et al. (2013) Outdoor exposure and vitamin D levels in urban children with asthma. Nutr J 12:81
Levin, Albert M; Mathias, Rasika A; Huang, Lili et al. (2013) A meta-analysis of genome-wide association studies for serum total IgE in diverse study populations. J Allergy Clin Immunol 131:1176-84
Myers, Rachel A; Himes, Blanca E; Gignoux, Christopher R et al. (2012) Further replication studies of the EVE Consortium meta-analysis identifies 2 asthma risk loci in European Americans. J Allergy Clin Immunol 130:1294-301
Huang, Weiguo; Besar, Kalpana; Lecover, Rachel et al. (2012) Correction to Highly Sensitive NH(3) Detection Based on Organic Field-Effect Transistors with Tris(pentafluorophenyl)borane as Receptor. J Am Chem Soc 134:18149
Huang, Weiguo; Besar, Kalpana; LeCover, Rachel et al. (2012) Highly sensitive NH3 detection based on organic field-effect transistors with tris(pentafluorophenyl)borane as receptor. J Am Chem Soc 134:14650-3
Butz, Arlene M; Breysse, Patrick; Rand, Cynthia et al. (2011) Household smoking behavior: effects on indoor air quality and health of urban children with asthma. Matern Child Health J 15:460-8
Tremblay, Noah J; Jung, Byung Jun; Breysse, Patrick et al. (2011) Digital Inverter Amine Sensing via Synergistic Responses by n and p Organic Semiconductors. Adv Funct Mater 21:4314-4319
Hansel, Nadia N; Matsui, Elizabeth C; Rusher, Robert et al. (2011) Predicting future asthma morbidity in preschool inner-city children. J Asthma 48:797-803
McCormack, Meredith C; Breysse, Patrick N; Matsui, Elizabeth C et al. (2011) Indoor particulate matter increases asthma morbidity in children with non-atopic and atopic asthma. Ann Allergy Asthma Immunol 106:308-15

Showing the most recent 10 out of 50 publications